12.函數(shù)f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值為3,最小值為-$\frac{1}{8}$.

分析 利用余弦函數(shù)的倍角公式進行化簡,再根據(jù)二次函數(shù)和正弦函數(shù)的性質(zhì)即可求出.

解答 解:f(x)=1-cos($\frac{π}{2}$-x)-cos2x=1+sinx-1+2sin2x=2(sinx+$\frac{1}{4}$)2-$\frac{1}{8}$
∵-1≤sin≤-1,
∴當(dāng)sinx=1時,函數(shù)取得最大值,此時最大值為3
當(dāng)sinx=-$\frac{1}{4}$時,函數(shù)取得最小值,此時最小值為-$\frac{1}{8}$.
故答案為:3,-$\frac{1}{8}$

點評 本題主要考查三角函數(shù)最值的求解,利用余弦函數(shù)的倍角公式結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-ax-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥0對任意的x∈R恒成立,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\sqrt{2+\frac{2}{3}}$=2$\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}$=3$\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}$=4$\sqrt{\frac{4}{15}}$,…,依此規(guī)律,若$\sqrt{8+\frac{a}}$=8$\sqrt{\frac{a}}$,則a、b的值分別是8,63.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x∈{2,3,7},y∈{-31,-24,4},則xy可表示不同的值的個數(shù)是( 。
A.1+1=2B.1+1+1=3C.2×3=6D.3×3=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)y=$\sqrt{1-lg(x+2)}$的定義域為(-2,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列函數(shù)中,可以是單調(diào)遞增函數(shù)的為( 。
A.f(x)=(x-a)|x|,a≠0B.f(x)=x2+ax+1,a∈RC.f(x)=log2(ax-1),a∈RD.f(x)=ax2+cosx,a∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,AB是⊙O的直徑,C,D是⊙O上的點,AD是∠BAC的平分線,過點D作DE⊥AC,交AC的延長線于點E.
(1)求證:DE2=EC•EA;
(2)過D點作DF⊥AB,垂足為F,求證:$\frac{AF}{AE}$=$\frac{CE}{FB}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.三棱錐P-ABC中,PC⊥平面ABC,PC=6,BC⊥AC,D,E分別是線段AB.BC上的點,且CD=DE=2$\sqrt{2}$,CE=2EB=4
(Ⅰ)證明:DE⊥平面PCD;
(Ⅱ)設(shè)點Q為線段PB上一點,且直線QC與平面PCD所成角為30°,求$\frac{PQ}{PB}$的值;
(Ⅲ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定點F1(-1,0),F(xiàn)2(1,0),動點P滿足條件:|$\overrightarrow{P{F}_{1}}$|+|$\overrightarrow{P{F}_{2}}$|=2$\sqrt{2}$,點P的軌跡是曲線E,直線l:y=x+b與曲線E交于A、B兩點,且|AB|=$\frac{4\sqrt{2}}{3}$.
(Ⅰ)求曲線E的方程;
(II)求直線l的方程;
(Ⅲ) 設(shè)過點F1的直線與曲線E交于M、N兩點,并且線段MN的中點在直線2x+y=0上,求直線MN的方程.

查看答案和解析>>

同步練習(xí)冊答案