17.下列函數(shù)中,可以是單調(diào)遞增函數(shù)的為( 。
A.f(x)=(x-a)|x|,a≠0B.f(x)=x2+ax+1,a∈RC.f(x)=log2(ax-1),a∈RD.f(x)=ax2+cosx,a∈R

分析 根據(jù)二次函數(shù)的性質(zhì)以及對數(shù)函數(shù)的性質(zhì)判斷起單調(diào)性即可.

解答 解:對于A、B是二次函數(shù),不單調(diào),
對于D:a=0時,f(x)=cosx,不單調(diào),a≠0時,f(x)不單調(diào),
對于C:a>0時,f(x)單調(diào)遞增,
故選:C.

點評 本題考查了函數(shù)的單調(diào)性問題,考查二次函數(shù)以及對數(shù)函數(shù)、三角函數(shù)的性質(zhì),是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.設二階矩陣M是把坐標平面上點的橫坐標不變、縱坐標沿y方向伸長為原來5倍的伸壓變換.
(1)求直線4x-10y=1在M作用下的方程;
(2)求M的特征值與特征向量.
(3)求M5$[\begin{array}{l}2\\ 3\end{array}]$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設{an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13,
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項和.
(Ⅲ)求{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在一次考試中,出了4道判斷題,正確的記“√”,不正確的記“×”.若某考生完全隨意記上了4個符號(記“√”或“×”的可能性相等)求:
(1)全部正確的概率;
(2)正確答案不少于2道的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.函數(shù)f(x)=1-cos($\frac{π}{2}$-x)-cos2x的最大值為3,最小值為-$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.為了解游客對2015年“十一”小長假的旅游情況是否滿意,某旅行社從年齡(單位:歲)[22,52]在內(nèi)的游客中隨機抽取了1000人,并且作出了各個年齡段的頻率分布直方圖如圖所示,同時對這1000人的旅游結(jié)果滿意情況進行統(tǒng)計得到如表:
分組滿意的人數(shù)占本組的頻率
[22,27)300.6
[27.32)n0.95
[32,37)1200.8
[37,42)432m
[42,47)1440.96
[47,52)960.96
(1)求統(tǒng)計表中m和n的值;
(2)從年齡在[42,52]內(nèi)且對旅游結(jié)果滿意的游客中,采用分層抽樣的方法抽取10人,再從抽取的10人中隨機抽取4人做進一步調(diào)查,記4人中年齡在[47,52]內(nèi)的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上和反面向上的概率都為$\frac{1}{2}$,構(gòu)造數(shù)列{an},使an=$\left\{\begin{array}{l}{1,第n次正面向上}\\{-1,第n次把反面向上}\end{array}\right.$,記Sn=a1+a2+…+an,則S2≠0且S8=2的概率為( 。
A.$\frac{43}{128}$B.$\frac{43}{64}$C.$\frac{13}{128}$D.$\frac{13}{64}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.用冒泡排序算法對無序列數(shù)據(jù)進行從小到大排序,則最先沉到最右邊的數(shù)是( 。
A.最大數(shù)B.最小數(shù)
C.既不最大也不最小D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{an}和{bn}的通項公式分別為an=3n+6,bn=2n+7(n∈N*),將集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素從小到大依次排列,構(gòu)成數(shù)列{cn},則c2016+c2017=6064.

查看答案和解析>>

同步練習冊答案