【題目】在某次測驗中,有6位同學的平均成績?yōu)?5分, 用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績?nèi)缦拢?/span>
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學的成績x6,及這6位同學成績的標準差s;
(2)從前5位同學中選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.
【答案】(1)90,7 (2)0.4
【解析】
試題分析:(1)根據(jù)平均數(shù)公式寫出這組數(shù)據(jù)的平均數(shù)表示式,在表示式中有一個未知量,根據(jù)解方程的思想得到結(jié)果,求出這組數(shù)據(jù)的方差,再進一步做出標準差.(2)本題是一個古典概型,試驗發(fā)生包含的事件是從5位同學中選2個,共有種結(jié)果,滿足條件的事件是恰有一位成績在區(qū)間(68,75)中,共有種結(jié)果,根據(jù)概率公式得到結(jié)果
試題解析:(1)∵這6位同學的平均成績?yōu)?5分,
∴(70+76+72+70+72+x6)=75,解得x6=90.
這6位同學成績的方差
s2=×[(70-75)2+(76-75)2+(72-75)2+(70-75)2+(72-75)2+(90-75)2]=49, ∴標準差s=7.
(2)從前5位同學中,隨機地選出2位同學的成績有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70, 72),共10種,
恰有1位同學成績在區(qū)間(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4種.所求的概率為=0.4.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面是正三角形,且與底面垂直,底面是邊長為2的菱形, 是的中點,過三點的平面交于, 為的中點,求證:
(1)平面;
(2)平面;
(3)平面平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列是公差為正數(shù)的等差數(shù)列,其前項和為,且,.
(1)求數(shù)列的通項公式;
(2)數(shù)列滿足,.
①求數(shù)列的通項公式;
②是否存在正整數(shù),使得成等差數(shù)列?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某小區(qū)隨機抽取40個家庭,收集了這40個家庭去年的月均用水量(單位:噸)的數(shù)據(jù),整理得到頻數(shù)分布表和頻率分布直方圖.
(1)求頻率分布直方圖中的值;
(2)從該小區(qū)隨機選取一個家庭,試估計這個家庭去年的月均用水量不低于6噸的概率;
(3)在這40個家庭中,用分層抽樣的方法從月均用水量不低于6噸的家庭里抽取一個容量為7的樣本,將該樣本看成一個總體,從中任意選取2個家庭,求其中恰有一個家庭的月均用水量不低于8噸的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列中,,且對任意的成等比數(shù)列,其公比為.
(1)若,求;
(2)若對任意的成等差數(shù)列,其公差為.設.
①求證:成等差數(shù)列并指出其公差;
②若,試求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an+1=,設bn=,n∈N*。
(1)證明{bn}是等比數(shù)列(指出首項和公比);
(2)求數(shù)列{log2bn}的前n項和Tn。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市100戶居民的月平均用電量(單位:度),以分組的頻率分布直方圖如圖所示.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為的四組用戶中,用分層抽樣的方法抽取11戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com