對于函數(shù)f(x),若在定義域內(nèi)存在實數(shù)x,使得f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.
(1)已知二次函數(shù)f(x)=ax2+4x-a(a∈R),試判斷f(x)是否為“局部奇函數(shù)”?并說明理由;
(2)若f(x)=2x+m是定義在區(qū)間[-1,1]上的“局部奇函數(shù)”,求實數(shù)m的取值范圍;
(3)(文)若f(x)=ex-ex-2m為定義域R上的“局部奇函數(shù)”,求證:若x>1,則ex>x2-2mx+1.
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用局部奇函數(shù)的定義,建立方程關(guān)系,然后判斷方程是否有解即可.
解答: 解:f(x)為“局部奇函數(shù)”等價于關(guān)于x的方程f(x)+f(-x)=0有解.
(1)當f(x)=ax2+4x-a(a∈R)時,
方程f(x)+f(-x)=0即2a(x2-1)=0有解x=±1,所以f(x)為“局部奇函數(shù)”.
(2)當f(x)=2x+m時,f(-x)=-f(x)可化為2x+2-x+2m=0,
因為f(x)的定義域為[-1,1],所以方程2x+2-x+2m=0在[-1,1]上有解.…(5分)
t=2x∈[
1
2
,2]
,則-2m=t+
1
t

設g(t)=t+
1
t
,則g'(t)=1-
1
t2
=
t2-1
t2
,
當t∈(0,1)時,g'(t)<0,故g(t)在(0,1)上為減函數(shù),
當t∈(1,+∞)時,g'(t)>0,故g(t)在(1,+∞)上為增函數(shù).       …(7分)
所以t∈[
1
2
,2
]時,g(t)∈[2,
5
2
]

所以-2m∈[2,
5
2
]
,即m∈[-
5
4
,-1]
.                          …(9分)
(文)f(x)=ex-ex-2m為定義域R上的“局部奇函數(shù)”,
f(x)+f(-x)=0可化為m=
ex+e-x
4
2
exe-x
4
=
1
2
(x=0時等號成立),即m≥
1
2

設g(x)=ex-x2+2mx-1(x>1),由g'(x)=ex-2x+2m≥ex-2x+1,
顯然,由圖象知,x>1時ex-2x+1>0成立,所以g'(x)≥ex-2x+1>0,
函數(shù)g(x)=ex-x2+2mx-1在(1,+∞)上遞增,則g(x)>g(1)=e+2m-2≥e+2×
1
2
-2>0

即ex>x2-2mx+1成立.
點評:本題主要考查新定義的應用,利用新定義,建立方程關(guān)系,然后利用函數(shù)性質(zhì)進行求解是解決本題的關(guān)鍵,考查學生的運算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某班有50名學生,其中正、副班長各1人,現(xiàn)要選派5人參加一項社區(qū)活動,要求正、副班長至少1人參加,問共有多少種選派方法?下面是學生提供的四個計算式,其中錯誤的是( 。
A、
C
1
2
C
4
49
B、
C
5
50
-
C
5
48
C、
C
1
2
C
4
49
-
C
2
2
C
3
48
D、
C
1
2
C
4
48
+
C
2
2
C
3
48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,A,B,C所對的邊分別為a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=
2
,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

己知函數(shù)f(x)=-
1
3
x3+2ax2-3a2x(a∈R且a≠0)

(Ⅰ)當a=-1時,求曲線y=f(x)在(-2,m)處的切線方程:
(Ⅱ)當a>0時,求函數(shù)y=f(x)的單調(diào)區(qū)間和極值;
(Ⅲ)當x∈[2a,2a+2]時,不等式|f′(x)|≤3a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且a1=2,4Sn=anan+1,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設數(shù)列{
1
an2
}
與的前n項和為Tn,求證:
n
4n+4
Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分別為邊AD和BC上的點,且EF∥AB,AD=2AE=2AB=4FC=4.將四邊形EFCD沿EF折起成如圖2的位置,使AD=AE.
(1)求證:AF∥平面CBD;
(2)求平面CBD與平面DAE所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過點(
3
1
2
),以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求
TM
TN
的最小值;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,問丨OR丨•丨OS丨是否為定值?若是請求出定值,不是則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系xOy中,有一組底邊長為an的等腰直角三角形AnBnCn(n=1,2,…),底邊BnCn依次放置在y軸上(相鄰頂點重合),點B1的坐標為(0,b).
(Ⅰ)若b=1,a1=2,a2=4,求點A1,A2的坐標;
(Ⅱ)若A1,A2,A3,…,An在同一直線上,求證:數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x,y的二元一次不等式組
x+2y≤4
x-y≤1
x+2≥0
,則x+2y+2的最小值為
 

查看答案和解析>>

同步練習冊答案