現(xiàn)有8名運動員參加110米欄決賽,共有1,2,3,4,5,6,7,8八條跑道,其中甲,乙,丙三名運動員道次各不相鄰,丁不在第一道,則安排這8名運動員比賽的方式共有
 
種.
考點:計數(shù)原理的應用
專題:排列組合
分析:利用間接法,先不考慮丁,先排除甲,乙,丙三名運動員的另外5人,然后把甲,乙,丙三名運動員插入到里面即可,再減去丁再第一道的位置的情況,問題得以解決
解答: 解:先不考慮丁,先排除甲,乙,丙三名運動員的另外5人,然后把甲,乙,丙三名運動員所形成的6個間隔中有插入到里面,有
A
5
5
A
3
6
=14400種,
若丁在丁在第一道,先排除甲,乙,丙三名運動員的另外4人,然后把甲,乙,丙三名運動員所形成的5個間隔中有插入到里面,有
A
4
4
A
3
5
=1440種,
故丁不在第一道,則安排這8名運動員比賽的方式共有14400-1440=12960,
故答案為:12960.
點評:排列與組合問題要區(qū)分開,若題目要求元素的順序則是排列問題,排列問題要做到不重不漏,有些題目帶有一定的約束條件,解題時要先考慮有限制條件的元素.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知E、F、G、H分別是三棱錐A-BCD 棱AB、BC、CD、DA的中點,
(1)四邊形EFGH是
 
形;
(2)AC與BD所成角為60°,且AC=BD=1,則EG=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a(2x-1)+(2a2+1)ln(-x),a∈R.
(1)討論f(x)在定義域上的單調(diào)性;
(2)當a≥0時,判斷f(x)在[-1,-
1
2
]上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=5
3
cos2x+
3
sin2x-4sinxcosx.
(1)求f(
12
);
(2)若f(a)=5
3
,a∈(
π
2
,π),求角a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=e2xcos3x在(0,1)處的切線與直線C的距離為
5
,求直線c的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a為實數(shù),函數(shù)f(x)=x2+x|x-a|,若f(x)在R上具有單調(diào)性,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,點D是AB的中點,點M是△ABC三條中線的交點,O是空間任意一點.求證:
(1)
OD
=
1
2
OA
+
OB
);
(2)
OM
=
1
3
OA
+
OB
+
OC
).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且2Sn=3an-1,等差數(shù)列{bn}中,b2+b5=12,b3+b8=20,設數(shù)列{bn}的前n項和為Tn,比較an與Tn的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C是銳角△ABC的三個內(nèi)角,向量
p
=(sinA,1)
,
q
=(1,-cosB)
,則
p
q
的夾角是( 。
A、銳角B、鈍角C、直角D、不確定

查看答案和解析>>

同步練習冊答案