【題目】如圖,有一段河流,河的一側(cè)是以O為圓心,半徑為米的扇形區(qū)域OCD,河的另一側(cè)是一段筆直的河岸l,岸邊有一煙囪AB(不計(jì)B離河岸的距離),且OB的連線(xiàn)恰好與河岸l垂直,設(shè)OB與圓弧的交點(diǎn)為E.經(jīng)測(cè)量,扇形區(qū)域和河岸處于同一水平面,在點(diǎn)C,點(diǎn)O點(diǎn)E處測(cè)得煙囪AB的仰角分別為,

(1)求煙囪AB的高度;

(2)如果要在CE間修一條直路,求CE的長(zhǎng).

【答案】(1)15米 (2)10米.

【解析】

試題分析:(1)設(shè)AB的高度為,根據(jù),利用直角三角形建立等量關(guān)系:,解得(2)利用余弦定理建立等量關(guān)系:,從而可得

試題解析:(1)設(shè)AB的高度為

CAB中,因?yàn)?/span>,所以, 1分

OAB中,因?yàn)?/span>,, 2分

所以,, 4分

由題意得,解得 6分

答:煙囪的高度為15米 7分

(2)在OBC中,

, 10分

所以在OCE中,

13分

答:CE的長(zhǎng)為10米 14分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家具廠有方木料 ,五合板 ,準(zhǔn)備加工成書(shū)桌和書(shū)櫥出售.已知生產(chǎn)每張書(shū)桌需要方木料 ,五合板 ,生產(chǎn)每個(gè)書(shū)櫥需要方木料 ,五合板 ,出售一張書(shū)桌可獲利潤(rùn) 元,出售一個(gè)書(shū)櫥可獲利潤(rùn) 元.

(1)如果只安排生產(chǎn)書(shū)桌,可獲利潤(rùn)多少?

(2)如果只安排生產(chǎn)書(shū)櫥,可獲利潤(rùn)多少?

(3)怎祥安排生產(chǎn)可使所得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,為三棱柱,且平面,四邊形為平行四邊形,

1)若,求證:平面;

2)若,二面角的余弦值為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)定義在區(qū)間上的函數(shù),如果對(duì)任意,都有成立,那么稱(chēng)函數(shù)在區(qū)間上可被替代,稱(chēng)為替代區(qū)間.給出以下問(wèn)題:

在區(qū)間上可被替代;

可被替代的一個(gè)替代區(qū)間;

在區(qū)間可被替代,則;

,,則存在實(shí)數(shù),使得在區(qū)間上被替代; 其中真命題有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(xiàn)為參數(shù),曲線(xiàn)為參數(shù)

1設(shè)相交于,兩點(diǎn),;

2若把曲線(xiàn)上各點(diǎn)的橫坐標(biāo)壓縮為原來(lái)的,縱坐標(biāo)壓縮為原來(lái)的,得到曲線(xiàn),設(shè)點(diǎn)是曲線(xiàn)上的一個(gè)動(dòng)點(diǎn)求它到直線(xiàn)距離的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)滿(mǎn)足,則稱(chēng)局部奇函數(shù).

為定義在上的局部奇函數(shù);

方程有兩個(gè)不等實(shí)根;

為假命題,為真命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是數(shù)列的前n項(xiàng)和,滿(mǎn)足,正項(xiàng)等比數(shù)列的前n項(xiàng)和為,且滿(mǎn)足.

() 求數(shù)列{an}和{bn}的通項(xiàng)公式; () ,求數(shù)列{cn}的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式的解集為

(1)求的值;

(2)若不等式的解集為,不等式的解集為,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓過(guò)點(diǎn),離心率為,分別為左右焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若上存在兩個(gè)點(diǎn),橢圓上有兩個(gè)點(diǎn)滿(mǎn)足三點(diǎn)共線(xiàn),三點(diǎn)共線(xiàn),且,求四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案