【題目】已知A、B、C是△ABC的三個(gè)內(nèi)角,向量m=(-1, ),n=(cosA,sinA),且m·n=1.

(1)求角A;

(2)若=-3,求tanC.

【答案】(1) ;(2) .

【解析】試題分析:(1)由m·n=1,代入坐標(biāo)用兩角和與差的正弦公式化簡(jiǎn),即可求出角A;(2)將已知條件用完全平方公式和平方差公式化簡(jiǎn),可得=-3,分式上下同除以,解出,tanC=tan[π-(AB)],利用誘導(dǎo)公式和兩角和與差的正切公式化簡(jiǎn),把的值代入即可.

試題解析:

(1)∵m·n=1,

sinA-cosA=1,2(sinA·-cosA·)=1,

sin(A)=,

0<A<π,- <A<

A.A.

(2)由題知=-3,

=-3

=-3

=-3,tanB=2.

∴tanC=tan[π-(AB)]

=-tan(AB)=-.

點(diǎn)睛:本題考查平面向量數(shù)量積的坐標(biāo)運(yùn)算,同角三角函數(shù)的基本關(guān)系和兩角和與差的正切公式. 平面向量的數(shù)量積計(jì)算問(wèn)題,往往有兩種形式,一是利用數(shù)量積的定義式,二是利用數(shù)量積的坐標(biāo)運(yùn)算公式,涉及幾何圖形的問(wèn)題,先建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,可起到化繁為簡(jiǎn)的妙用. 利用向量夾角公式、模公式及向量垂直的充要條件,可將有關(guān)角度問(wèn)題、線段長(zhǎng)問(wèn)題及垂直問(wèn)題轉(zhuǎn)化為向量的數(shù)量積來(lái)解決.列出方程組求解未知數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn)為橢圓上一點(diǎn),求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩種商品,經(jīng)營(yíng)銷售這兩種商品所能獲得的利潤(rùn)依次是P(萬(wàn)元)和Q(萬(wàn)元),它們與投入資金x(萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式:P=,Q= .今有3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,為獲得最大利潤(rùn),對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求證:當(dāng)x>1時(shí),f(x)>0成立;

(2)若t> ,判斷函數(shù)g(x)=x[f(x)+t+1]的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)記函數(shù)的兩個(gè)零點(diǎn)分別為,且.已知,若不等式恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.(14分)

(1)此方程表示圓,求m的取值范圍;

(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求m的值;

(3)在(2)的條件下,求以為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一座圓拱橋,當(dāng)水面在如圖所示位置時(shí),拱頂離水面2米,水面寬12米,當(dāng)水面下降1米后,水面寬多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】空氣質(zhì)量按照空氣質(zhì)量指數(shù)大小分為七檔(五級(jí)),相對(duì)應(yīng)空氣質(zhì)量的七個(gè)類別,指數(shù)越大,說(shuō)明污染的情況越嚴(yán)重,對(duì)人體危害越大.

指數(shù)

級(jí)別

類別

戶外活動(dòng)建議

優(yōu)

可正常活動(dòng)

輕微污染

易感人群癥狀有輕度加劇,健康人群出現(xiàn)刺激癥狀,心臟病和呼吸系統(tǒng)疾病患者應(yīng)減少體積消耗和戶外活動(dòng).

輕度污染

中度污染

心臟病和肺病患者癥狀顯著加劇,運(yùn)動(dòng)耐受力降低,健康人群中普遍出現(xiàn)癥狀,老年人和心臟病、肺病患者應(yīng)減少體力活動(dòng).

中度重污染

重污染

健康人運(yùn)動(dòng)耐受力降低,由明顯強(qiáng)烈癥狀,提前出現(xiàn)某些疾病,老年人和病人應(yīng)當(dāng)留在室內(nèi),避免體力消耗,一般人群應(yīng)盡量減少戶外活動(dòng).

現(xiàn)統(tǒng)計(jì)邵陽(yáng)市市區(qū)2016年1月至11月連續(xù)60天的空氣質(zhì)量指數(shù),制成如圖所示的頻率分布直方圖.

(1)求這60天中屬輕度污染的天數(shù);

(2)求這60天空氣質(zhì)量指數(shù)的平均值;

(3)一般地,當(dāng)空氣質(zhì)量為輕度污染或輕度污染以上時(shí)才會(huì)出現(xiàn)霧霾天氣,且此時(shí)出現(xiàn)霧霾天氣的概率為,請(qǐng)根據(jù)統(tǒng)計(jì)數(shù)據(jù),求在未來(lái)2天里,邵陽(yáng)市恰有1天出現(xiàn)霧霾天氣的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料

12月1日

12月2日

12月3日

12月4日

12月5日

溫差(°C)

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

(2)若選取的是12月1日12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?

注:

查看答案和解析>>

同步練習(xí)冊(cè)答案