【題目】已知直線與橢圓相交于兩點(diǎn).

(1)若橢圓的離心率為,焦距為,求線段的長;

(2)若向量與向量互相垂直其中為坐標(biāo)原點(diǎn),當(dāng)橢圓的離心率時(shí),求橢圓長軸長的最大值.

【答案】1;2.

【解析】

試題分析:1根據(jù)橢圓的幾何性質(zhì),求得的值,得到橢圓的標(biāo)準(zhǔn)方程,直線方程與橢圓的方程聯(lián)立,求得交點(diǎn)的坐標(biāo),即可求解線段的長;2,得,直線方程與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系和韋達(dá)定理,整理得,即可求解長軸的最大值.

試題解析:,,,則

橢圓的方程為;

聯(lián)立,消去得:,設(shè),

,…………6分

⑵∵,,即,

,消去

,整理得,

,,

,

整理得:,代入上式得

,,

,,,

,適合條件,

由此得,,故長軸長的最大值為……………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時(shí),討論的單調(diào)性;

2若對(duì)任意的恒有成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且,設(shè),數(shù)列滿足.

(1)求數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

(3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域,部分對(duì)應(yīng)值如表, 的導(dǎo)函數(shù)的圖象如圖所示,下列關(guān)于函數(shù)的命題;

函數(shù)的值域?yàn)?/span>;

函數(shù)上是減函數(shù);

如果當(dāng)時(shí), 最大值是,那么的最大值為;

當(dāng)時(shí),函數(shù)最多有4個(gè)零點(diǎn).

其中正確命題的序號(hào)是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性;

當(dāng)時(shí),設(shè),若存在,,使,求實(shí)數(shù)的取值范圍.(為自然對(duì)數(shù)的底數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}共有2k項(xiàng)(),數(shù)列{an}的前n項(xiàng)和為Sn,滿足:a1 = 2,an1 = (p 1) Sn 2(n = 1,2,…, 2k1),其中常數(shù)p > 1.

(1)求證:數(shù)列{an}是等比數(shù)列;

(2)若,數(shù)列{bn }滿足n = 1,2,…, 2k),求數(shù)列

{bn }的通項(xiàng)公式;

(3)對(duì)于(2)中數(shù)列{bn },求和Tn =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cos C=.

()求ABC的周長; ()求cos A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),.

當(dāng)時(shí),求曲線處的切線的方程;

如果存在,使得成立,求滿足上述條件的最大整數(shù);

)如果對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,.

(Ⅰ)求證: (Ⅱ)求二面角的大小.

查看答案和解析>>

同步練習(xí)冊答案