【題目】如圖所示的正四棱柱的底面邊長為,側(cè)棱,點(diǎn)在棱上,
且 ().
(1)當(dāng)時(shí),求三棱錐的體積;
(2)當(dāng)異面直線與所成角的大小為時(shí),求的值.
【答案】(1) (2)
【解析】試題分析:(1)正四棱柱中, 平面,可得 ;(2)以為原點(diǎn),射線、、作軸、軸、軸的正半軸,建立空間直角坐標(biāo)系,可得, ,利用空間向量夾角余弦公式列方程求解即可.
試題解析:(1)由,得, 又正四棱柱,則平面,
則 .
(2)以為原點(diǎn),射線、、作軸、軸、軸的正半軸,建立空間直角坐標(biāo)系(如圖),
則, , , ,
即,
又異面直線與所成角的大小為,
則,
化簡整理得,又,即.
【方法點(diǎn)晴】本題主要考查利用空間向量求異面直線所成的角角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當(dāng)?shù)目臻g直角坐標(biāo)系;(2)寫出相應(yīng)點(diǎn)的坐標(biāo),求出相應(yīng)直線的方向向量;(3)設(shè)出相應(yīng)平面的法向量,利用兩直線垂直數(shù)量積為零列出方程組求出法向量;(4)將空間位置關(guān)系轉(zhuǎn)化為向量關(guān)系;(5)根據(jù)定理結(jié)論求出相應(yīng)的角和距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,為邊的中點(diǎn),將沿直線翻轉(zhuǎn)為.若為線段的中點(diǎn),則在翻轉(zhuǎn)過程中,有下列命題:
①是定值;
②點(diǎn)在圓上運(yùn)動(dòng);
③一定存在某個(gè)位置,使;
④若平面,則平面.
其中正確的個(gè)數(shù)為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=A cos(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,下面結(jié)論錯(cuò)誤的是( )
A. 函數(shù)f(x)的最小正周期為
B. 函數(shù)f(x)的圖象可由g(x)=Acos ωx的圖象向右平移個(gè)單位長度得到
C. 函數(shù)f(x)的圖象關(guān)于直線x=對(duì)稱
D. 函數(shù)f(x)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是60名學(xué)生參加數(shù)學(xué)競賽的成績(均為整數(shù))的頻率分布直方圖,估計(jì)這次數(shù)學(xué)競賽的及格率(60分及以上為及格)是( )
A. 0.9 B. 0.75 C. 0.8 D. 0.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列同時(shí)滿足條件:①存在互異的使得(為常數(shù));
②當(dāng)且時(shí),對(duì)任意都有,則稱數(shù)列為雙底數(shù)列.
(1)判斷以下數(shù)列是否為雙底數(shù)列(只需寫出結(jié)論不必證明);
①; ②; ③
(2)設(shè),若數(shù)列是雙底數(shù)列,求實(shí)數(shù)的值以及數(shù)列的前項(xiàng)和;
(3)設(shè),是否存在整數(shù),使得數(shù)列為雙底數(shù)列?若存在,求出所有的的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是邊長為3的等邊三角形,四邊形為正方形,平面平面.點(diǎn)、分別為、上的點(diǎn),且,點(diǎn)為上的一點(diǎn),且.
(Ⅰ)當(dāng)時(shí),求證: 平面;
(Ⅱ)當(dāng)時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有以下四種變換方式:
① 向左平移個(gè)單位長度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;
② 向右平移個(gè)單位長度,再將每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的;
③ 每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向右平移個(gè)單位長度;
④ 每個(gè)點(diǎn)的橫坐標(biāo)縮短為原來的,向左平移個(gè)單位長度;
其中能將的圖像變換成函數(shù)的圖像的是( )
A.①和③ B.①和④ C.②和④ D.②和③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)函數(shù),討論函數(shù)的單調(diào)性;
(2)當(dāng) 時(shí),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com