9.袋中有大小相同的3個紅球,5個白球,從中不放回地依次摸取2球,在已知第一次取出白球的前提下,第二次取得紅球的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{3}{8}$D.$\frac{3}{7}$

分析 設(shè)事件A表示“第一次取出白球”,事件B表示“第二次取得紅球”,則P(A)=$\frac{5}{8}$,P(AB)=$\frac{15}{56}$,由此利用條件概率公式能求出第一次取出白球的前提下,第二次取得紅球的概率.

解答 解:袋中有大小相同的3個紅球,5個白球,從中不放回地依次摸取2球,
設(shè)事件A表示“第一次取出白球”,事件B表示“第二次取得紅球”,
則P(A)=$\frac{5}{8}$,P(AB)=$\frac{15}{56}$,
∴第一次取出白球的前提下,第二次取得紅球的概率:
P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{15}{56}}{\frac{5}{8}}$=$\frac{3}{7}$.
故選:D.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意條件概率計算公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題A:點M的直角坐標(biāo)是(0,2);命題B:點M的極坐標(biāo)是$(2,\frac{π}{2})$;則命題A是命題B的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.小明家里有兩雙不同的拖鞋,求停電時他摸黑任穿2只恰好成雙的概率( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{1\;\;\;\;\;\;\;\;\;\;\;\;\;(x≤\sqrt{3})}\\{\sqrt{4-{x}^{2}}(\sqrt{3}<x<2)}\\{0\;\;\;\;\;\;\;\;\;\;\;\;\;\;(x≥2)}\end{array}\right.$,則${∫}_{-1}^{2010}$f(x)dx的值為(  )
A.$\frac{π}{3}$+$\frac{2+\sqrt{3}}{2}$B.$\frac{π}{2}$+$\frac{2+\sqrt{3}}{2}$C.$\frac{π}{6}$+$\frac{2+\sqrt{3}}{2}$D.$\frac{π}{2}$+$\frac{1+\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={a|0<a<1},B={a∈R|ax2+4ax-4<0對任意實數(shù)x恒成立},則下列關(guān)系成立的是( 。
A.A?BB.B?AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={-1,-2,3},N={-2,3,5},則(  )
A.M⊆NB.N⊆MC.M∩N={-2,3}D.M∪N={-1,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點,過F2作雙曲線一條漸近線的垂線,垂足為點A,交另一條漸近線于點B,且$\overrightarrow{A{F_2}}=\frac{1}{3}\overrightarrow{{F_2}B}$,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{6}}}{2}$B.$\frac{{\sqrt{5}}}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12.
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{2}$,拋物線y2=2px(p>0)的準(zhǔn)線與雙曲線C的漸近線交于A,B點,△OAB(O為坐標(biāo)原點)的面積為4,則拋物線的方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

同步練習(xí)冊答案