已知x,y滿足不等式組,則z=2x+y的最大值與最小值的比值為( )
A.
B.
C.
D.2
【答案】分析:本題處理的思路為:根據(jù)已知的約束條件 畫出滿足約束條件的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最值,即可求解比值.
解答:解:約束條件 對(duì)應(yīng)的平面區(qū)域如下圖示:
當(dāng)直線z=2x+y過A(2,2)時(shí),Z取得最大值6.
當(dāng)直線z=2x+y過B(1,1)時(shí),Z取得最小值3,
故z=2x+y的最大值與最小值的比值為:2.
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是線性規(guī)劃,考查畫不等式組表示的可行域,考查數(shù)形結(jié)合求目標(biāo)函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值是( 。
A、21B、23C、25D、27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x、y滿足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在這些點(diǎn)中,使目標(biāo)函數(shù)z=6x+8y取得最大值的點(diǎn)的坐標(biāo)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標(biāo)函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•南匯區(qū)二模)(文)已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步練習(xí)冊(cè)答案