19.如圖,PA為四邊形ABCD外接圓的切線,CB的延長線交PA于點(diǎn)P,AC與BD相交于點(diǎn)M,PA∥BD
(1)求證:∠ACB=∠ACD;
(2)若PA=3,PC=6,AM=1,求AB的長.

分析 (1)利用弦切角定理及平行線的性質(zhì),證明:∠ACB=∠ACD;
(2)由切割線定理及△AMB~△ABC,求AB的長.

解答 (1)證明:∵PA為切線,∴∠PAB=∠ACB.
∵PA∥BD,∴∠PAB=∠ABD=∠ACD,
∴∠ACB=∠ACD…(5分)
(2)解:已知PA=3,PC=6,AM=1,由切割線定理PA2=PB•PC
得:$PB=\frac{3}{2},BC=\frac{9}{2}$,
∵PA∥BD,得$\frac{AM}{MC}=\frac{PB}{BC}{,_{\;}}∴MC=3$
又知△AMB~△ABC,所以$\frac{AB}{AM}=\frac{AC}{AB}$
所以AB2=AM•AC=4,所以AB=2…(10分)

點(diǎn)評(píng) 本題考查弦切角定理及平行線的性質(zhì),考查切割線定理,考查三角形相似的判定與性質(zhì),考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列各點(diǎn)中,位于不等式(x+2y+1)(x-y+4)<0表示的平面區(qū)域內(nèi)的是( 。
A.(0,0)B.(-2,0)C.(-1,0)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\sqrt{3}$sinωx•cosωx-cos2ωx的周期為$\frac{π}{2}$,其中ω>0
(1)求ω的值,并寫出函數(shù)f(x)的解析式
(2)設(shè)△ABC的三邊a、b、c依次成等比數(shù)列,且函數(shù)f(x)的定義域等于b邊所對(duì)的角B的取值集合,求此時(shí)函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在直角坐標(biāo)系xOy中,直線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+t}\\{y=7+t}\end{array}}\right.(t$為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸的極坐標(biāo)系下,曲線C2的方程ρ=-2cosθ+2sinθ.曲線C2上任意一點(diǎn)到直線C1距離的最小值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知在極坐標(biāo)系中,A(3$\sqrt{3}$,$\frac{π}{2}$),B(3,$\frac{π}{3}$),圓C的方程為ρ=2cosθ.
(1)求在平面直角坐標(biāo)系xOy中圓C的標(biāo)準(zhǔn)方程;
(2)已知P為圓C上的任意一點(diǎn),求△ABP面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.隨著我國經(jīng)濟(jì)的發(fā)展,居民的儲(chǔ)蓄存款逐年增長.設(shè)某地區(qū)城鄉(xiāng)居民人名幣儲(chǔ)蓄存款(年底余額)如表
年份20112012201320142015
時(shí)間代號(hào)t12345
儲(chǔ)蓄存款y(千億元)567810
(Ⅰ)求y關(guān)于t的回歸方程$\widehaty=\widehatbt+\widehata$;
(Ⅱ)用所求回歸直線方程預(yù)測該地區(qū)2016年(t=6)的人民幣儲(chǔ)蓄存款.
附:回歸方程$\widehaty=\widehatbt+\widehata$,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{t_i^2-n{{\overline t}^2}}}}$,$\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=3+5cost}\\{y=5+5sint}\end{array}\right.$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系得曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)將曲線C1向右移動(dòng)1個(gè)單位得到曲線C3,求C3與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四棱錐P-ABCD如圖所示,其中四邊形ABCD是等腰梯形,且∠ADC+∠DAB=180°,AB=2AD=2DC=2BC=4,PA=PC,平面PAC⊥平面ABCD,點(diǎn)P到平面ABCD的距離為$\sqrt{3}$.
(Ⅰ)求證:PA⊥BC;
(Ⅱ)求直線BP與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{{3+{{sin}^2}θ}}$,直線l與曲線C交于A,B兩點(diǎn).
(1)求曲線C的直角坐標(biāo)方程;
(2)求線段AB的長.

查看答案和解析>>

同步練習(xí)冊答案