【題目】已知函數(shù)

(1)當(dāng)時(shí),證明的圖象與軸相切;

(2)當(dāng)時(shí),證明存在兩個(gè)零點(diǎn).

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)先求導(dǎo),再設(shè)切點(diǎn),求出切點(diǎn)坐標(biāo),即可證明,

(2)分離參數(shù),構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的最值,即可證明.

證明:(1)當(dāng)a=1時(shí),fx)=(x﹣2)lnx+x﹣1.

f′(x)=lnx++1,

fx)與x軸相切,切點(diǎn)為(x0,0),

fx0)=(x0﹣2)lnx0+x0﹣1=0

f′(x0)=lnx0++1=0,

解得x0=1或x0=4(舍去)

x0=1,

∴切點(diǎn)為(1,0),

fx)的圖象與x軸相切

(2)∵fx)=(x﹣2)lnx+ax﹣1=0,

alnx+,

設(shè)gx)=lnx+,

g′(x)=﹣+,

hx)=1﹣2x﹣2lnx

易知hx)在(0,+∞)為減函數(shù),

h(1)=1﹣1﹣2ln1=0,

∴當(dāng)x∈(0,1)時(shí),g′(x)>0,函數(shù)gx)單調(diào)遞增,

當(dāng)x∈(1,+∞)時(shí),g′(x)<0,函數(shù)gx)單調(diào)遞減,

gxmaxg(1)=1,

當(dāng)x→0時(shí),gx)→﹣∞,當(dāng)x→+∞時(shí),gx)→﹣∞,

∴當(dāng)a<1時(shí),ygx)與ya有兩個(gè)交點(diǎn),

即當(dāng)a<1時(shí),證明fx)存在兩個(gè)零點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國(guó)時(shí)期吳國(guó)的數(shù)學(xué)家趙爽曾創(chuàng)制了一幅勾股圓方圖,用數(shù)形結(jié)合的方法給出了勾股定理的詳細(xì)證明.如圖所示的勾股圓方圖中,四個(gè)全等的直角三角形與中間的小正方形拼成一個(gè)大正方形,其中一個(gè)直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機(jī)投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且nN*).

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)已知等比數(shù)列{bn}是遞增的,且首項(xiàng)b1和公比q分別是方程(x24)(x21)=0實(shí)根,求數(shù)列的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】n2個(gè)數(shù)排成nn列的一個(gè)數(shù)陣,如圖:該數(shù)陣第一列的n個(gè)數(shù)從上到下構(gòu)成以m為公差的等差數(shù)列,每一行的n個(gè)數(shù)從左到右構(gòu)成以m為公比的等比數(shù)列(其中m0.已知a112,a13a61+1,記這n2個(gè)數(shù)的和為S.下列結(jié)論正確的有(

A.m3B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是圓F1:(x+12+y216上任意一點(diǎn),F21,0),線段PF2的垂直平分線與半徑PF1交于點(diǎn)Q,當(dāng)點(diǎn)P在圓F1上運(yùn)動(dòng)時(shí),記點(diǎn)Q的軌跡為曲線C.

1)求曲線C的方程;

2)記曲線Cx軸交于A,B兩點(diǎn),M是直線x1上任意一點(diǎn),直線MAMB與曲線C的另一個(gè)交點(diǎn)分別為D,E,求證:直線DE過定點(diǎn)H4,0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)(其中)的部分圖象如圖所示,把函數(shù)的圖像向右平移個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位,得到函數(shù)的圖像.

1)當(dāng)時(shí),求的值域

2)令,若對(duì)任意都有恒成立,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某部門參加職業(yè)技能測(cè)試的2000名員工中抽取100名員工,將其成績(jī)(滿分100分)按照,分成4組,得到如圖所示的頻率分布直方圖.

1)估計(jì)該部門參加測(cè)試員工的成績(jī)的中位數(shù);

2)估計(jì)該部門參加測(cè)試員工的平均成績(jī).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),其中,為實(shí)常數(shù)

(1)若時(shí),討論函數(shù)的單調(diào)性;

(2)若時(shí),不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若,當(dāng)時(shí),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型工廠有6臺(tái)大型機(jī)器,在1個(gè)月中,1臺(tái)機(jī)器至多出現(xiàn)1次故障,且每臺(tái)機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,出現(xiàn)故障時(shí)需1名工人進(jìn)行維修,每臺(tái)機(jī)器出現(xiàn)故障的概率為.已知1名工人每月只有維修2臺(tái)機(jī)器的能力(若有2臺(tái)機(jī)器同時(shí)出現(xiàn)故障,工廠只有1名維修工人,則該工人只能逐臺(tái)維修,對(duì)工廠的正常運(yùn)行沒有任何影響),每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障時(shí)能及時(shí)得到維修,就能使該廠獲得10萬元的利潤(rùn),否則將虧損2萬元.該工廠每月需支付給每名維修工人1萬元的工資.

(1)若每臺(tái)機(jī)器在當(dāng)月不出現(xiàn)故障或出現(xiàn)故障時(shí),有工人進(jìn)行維修(例如:3臺(tái)大型機(jī)器出現(xiàn)故障,則至少需要2名維修工人),則稱工廠能正常運(yùn)行.若該廠只有1名維修工人,求工廠每月能正常運(yùn)行的概率;

(2)已知該廠現(xiàn)有2名維修工人.

(�。┯浽搹S每月獲利為萬元,求的分布列與數(shù)學(xué)期望;

(ⅱ)以工廠每月獲利的數(shù)學(xué)期望為決策依據(jù),試問該廠是否應(yīng)再招聘1名維修工人?

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂備胶枪妤犲繘骞忛敓锟� 闂傚倸鍊搁崑濠囧箯閿燂拷