【題目】已知P是圓F1:(x+12+y216上任意一點,F21,0),線段PF2的垂直平分線與半徑PF1交于點Q,當(dāng)點P在圓F1上運動時,記點Q的軌跡為曲線C.

1)求曲線C的方程;

2)記曲線Cx軸交于AB兩點,M是直線x1上任意一點,直線MA,MB與曲線C的另一個交點分別為D,E,求證:直線DE過定點H40.

【答案】12)證明見解析

【解析】

1)根據(jù)橢圓的定義即可求出點Q的軌跡方程;

2)設(shè)出點M的坐標(biāo),表示出直線MA的方程,與橢圓方程聯(lián)立可求得點的坐標(biāo),同理可求得點的坐標(biāo),再利用三點共線的條件即可證出.

1)由已知|QF1|+|QF2||QF1|+|QP||PF1|4,

所以點Q的軌跡為以為F1,F2焦點,長軸長為4的橢圓,

2a4,a2,c1,b2a2c23

所以曲線C的方程為

2)由(1)可得A(﹣20),B2,0),設(shè)點M的坐標(biāo)為(1,m

直線MA的方程為:

聯(lián)立消去y整理得:(4m2+27x2+16m2x+16m21080

設(shè)點D的坐標(biāo)為(xD,yD),則

,則

直線MB的方程為:y=﹣mx2

y=﹣mx2)與聯(lián)立消去y整理得:(4m2+3x216m2x+16m2120

設(shè)點E的坐標(biāo)為(xE,yE),則,

,則

HD的斜率為

HE的斜率為

因為k1k2,所以直線DE經(jīng)過定點H.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值是(

A.10 B.11 C.12 D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的右焦點坐標(biāo)為,且點C上.

1)求橢圓的方程;

2)過點的直線lC交于M,N兩點,P為線段MN的中點,AC的左頂點,求直線AP的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中點表示十月的平均最高氣溫約為,點表示四月的平均最低氣溫約為.下面敘述不正確的是(

A.各月的平均最高氣溫都在以上

B.六月的平均溫差比九月的平均溫差大

C.七月和八月的平均最低氣溫基本相同

D.平均最低氣溫高于的月份有5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,,平面PAB,,點E滿足.

1)證明:;

2)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,證明的圖象與軸相切;

(2)當(dāng)時,證明存在兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的方程為

(1)以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程和直線的極坐標(biāo)方程;

(2)在(1)的條件下,直線的極坐標(biāo)方程為,設(shè)曲線與直線的交于點和點,曲線與直線的交于點和點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,是曲線上任意一點,動點滿足.

(1)求點的軌跡的方程;

(2)過點的直線交,兩點,過原點與點的直線交直線于點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,是橢圓上一動點(與左、右頂點不重合)已知的內(nèi)切圓半徑的最大值為,橢圓的離心率為.

1)求橢圓C的方程;

2)過的直線交橢圓兩點,過軸的垂線交橢圓與另一點不與重合).設(shè)的外心為,求證為定值.

查看答案和解析>>

同步練習(xí)冊答案