A. | $y=3sin\frac{π}{6}t+12$ | B. | $y=-3sin\frac{π}{6}t+12$ | C. | $y=3sin\frac{π}{12}t+12$ | D. | $y=3cos\frac{π}{12}t+12$ |
分析 高潮時(shí)水深為A+K,低潮時(shí)水深為-A+K,聯(lián)立方程組求得A和K的值,再由相鄰兩次高潮發(fā)生的時(shí)間相距12h,可知周期為12,由此求得ω值,再結(jié)合t=3時(shí)漲潮到一次高潮,把點(diǎn)(3,15)代入y=Asin(ωx+φ)+K的解析式求得φ,則函數(shù)y=f(t)的表達(dá)式可求.
解答 解:依題意,$\left\{\begin{array}{l}{A+K=15}\\{-A+K=9}\end{array}\right.$,解得$\left\{\begin{array}{l}{A=3}\\{K=12}\end{array}\right.$,
又T=$\frac{2π}{ω}=12$,
∴ω=$\frac{π}{6}$.
又f(3)=15,
∴3sin($\frac{3}{6}π$+φ)+12=15,
∴sin($\frac{π}{2}$+φ)=1.
∴φ=0,
∴y=f(t)=3sin$\frac{π}{6}$t+12.
故選:A.
點(diǎn)評(píng) 本題是應(yīng)用題,考查y=Asin(ωx+φ)+K型函數(shù)的圖象和性質(zhì),關(guān)鍵是對(duì)題意的理解,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com