已知遞增的等差數(shù)列{an}滿足a1=1,且a1,a2,a5成等比數(shù)列.
(1)求等差數(shù)列{an}的通項an;
(2)設bn=an+2an+1,求數(shù)列{bn}的前n項和Sn
考點:數(shù)列的求和,等差數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用等差數(shù)列的通項公式和等比數(shù)列的性質,求出首項和公差,由此能求出an=2n-1.
(2)由bn=an+2an+1=2n-1+22n=(2n-1)+4n,利用錯位相減法能求出數(shù)列{bn}的前n項和Sn
解答: (本題滿分12分)
解:(1)∵a1,a2,a5成等比數(shù)列
a22=a1a5,(a1+d)2=a1(a1+4d)…(2分)
∴d2=2a1d…(1分)
∵d>0,a1=1,∴d=2,…(1分)
∴an=a1+(n-1)d=2n-1.…(2分)
(2)∵bn=an+2an+1=2n-1+22n=(2n-1)+4n…(2分)
∴Sn=b1+b2+b3+…+bn
=(1+4)+(3+42)+(5+43)+…+[(2n-1)+4n]
=(1+3+5+…+2n-1)+(4+42+43+…+4n)…(2分)
=
n(1+2n-1)
2
+
4(1-4n)
1-4
=n2+
4n+1
3
-
4
3
…(2分)
點評:本題主要考查數(shù)列的通項公式、前n項和公式的求法,考查等差數(shù)列、等比數(shù)列等基礎知識,考查抽象概括能力,推理論證能力,運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,解題時要注意分組求和法的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

當a>0時,函數(shù)f(x)=(x2-2ax)ex的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2x(x≤0)
f(x-3)(x>0)
,則f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知Sn為數(shù)列{an}的前n項和,且對任意n∈N*,點(an,Sn)都在函數(shù)f(x)=-
1
2
x+
1
2
的圖象上.
(1)求{an}的通項公式;
(2)若bn=log 
1
3
a2n+1,Tn為數(shù)列{bn}的前項和,且
1
T1
+
1
T2
+…+
1
Tn
≤x2+ax+1對任意正整數(shù)n和任意x∈R恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x千件2356
成本y萬元78912
(1)求成本y與產(chǎn)量x之間的線性回歸方程(結果保留兩位小數(shù));
(2)試估計產(chǎn)品產(chǎn)量達到一萬件時所花費的成本費用.
附:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+xlnx(a∈R)
(1)若函數(shù)f(x)在區(qū)間[e,+∞)上為增函數(shù),求a的取值范圍;
(2)當a=1且k∈z時,不等式k(x-1)<f(x)在x∈(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
ax-b
x2+1
與函數(shù)g(x)=
1
2
lnx在點(1,0)處有公共的切線.
(1)求函數(shù)f(x)的解析式;
(2)求證:g(x)≥f(x)在x∈[1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若在x∈[0,
π
2
]上,有兩個不同的實數(shù)值滿足方程cos2x+
3
sin2x=k+1,則k的取值范圍是( 。
A、[-2,1]
B、[-2,1)
C、[0,1]
D、[0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某飛船變軌前的運行軌道是一個以地心為焦點的橢圓,飛船近地點、遠地點離地面的距離分別為200千米和350千米,設地球半徑為R千米,則此飛船軌道的離心率為
 
(結果用R的式子表示).

查看答案和解析>>

同步練習冊答案