19.若復(fù)數(shù)$\frac{2-ai}{1+i}$(a∈R)是純虛數(shù),i是虛數(shù)單位,則a的值是( 。
A.2B.1C.-1D.-2

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡復(fù)數(shù)$\frac{2-ai}{1+i}$,再由已知條件列出方程組,求解即可得答案.

解答 解:$\frac{2-ai}{1+i}$=$\frac{(2-ai)(1-i)}{(1+i)(1-i)}=\frac{(2-a)-(2+a)i}{2}$=$\frac{2-a}{2}-\frac{2+a}{2}i$,
由復(fù)數(shù)$\frac{2-ai}{1+i}$(a∈R)是純虛數(shù),
得$\left\{\begin{array}{l}{\frac{2-a}{2}=0}\\{-\frac{2+a}{2}≠0}\end{array}\right.$,
解得a=2.
故選:A.

點(diǎn)評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的算法,則輸出的結(jié)果為( 。
A.1B.$\frac{6}{5}$C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}$bcosC+csinB=$\sqrt{3}$a.
(1)求角B的大;
(2)若函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx,x∈R,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.對于函數(shù)f(x)=$\frac{e^x}{{x}^{2}}$+lnx-$\frac{2k}{x}$,若f′(1)=1,則k=( 。
A.$\frac{e}{2}$B.$\frac{e}{3}$C.-$\frac{e}{2}$D.-$\frac{e}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在如圖所示的四棱錐P-ABCD中,底面ABCD是長方形,PC⊥底面ABCD,PC=CD,E為PD的中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求證:PA⊥CE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.因式分解:2x2-x-5=2(x-$\frac{1-\sqrt{41}}{4}$)(x-$\frac{1+\sqrt{41}}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在極坐標(biāo)系中,已知曲線C:ρ=$2\sqrt{2}$sin(θ-$\frac{π}{4}$),P為曲線C上的動點(diǎn),定點(diǎn)Q(1,$\frac{π}{4}$).
(Ⅰ)將曲線C的方程化成直角坐標(biāo)方程,并說明它是什么曲線;
(Ⅱ)求P、Q兩點(diǎn)的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=(x-2)2|x-a|在區(qū)間[2,4]恒滿足不等式xf′(x)≥0,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,5]B.[2,5]C.[2,+∞)D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=lg(1-|x|)+$\frac{1}{{x}^{2}+1}$,則使得f(2x+1)≥f(x)成立的x的取值范圍是(-1,-$\frac{1}{3}$].

查看答案和解析>>

同步練習(xí)冊答案