已知實(shí)數(shù)a<0,函數(shù)f(x)=
2x+a,x<1
-x-2a,x≥1
若f(1-a)=f(1+a),則a的值為
 
考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由分段函數(shù)的表達(dá)式,及a<0,得1-a>1,1+a<1,則f(1-a)=f(1+a)即有-(1-a)-2a=2(1+a)+a,
解出a即可.
解答: 解:由于函數(shù)f(x)=
2x+a,x<1
-x-2a,x≥1

則由實(shí)數(shù)a<0,得1-a>1,1+a<1,
則f(1-a)=f(1+a)即有-(1-a)-2a=2(1+a)+a,
解得a=-
3
4

故答案為:-
3
4
點(diǎn)評(píng):本題考查分段函數(shù)及運(yùn)用,考查分段函數(shù)值應(yīng)注意各段的自變量的范圍,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足條件f(0)=0和f(x+2)-f(x)=4x
(1)求f(x);        
(2)求f(x)在區(qū)間[a,a+2](a∈R)上的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等比數(shù)列,已知an>0,an=an+1+an+2,則數(shù)列的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有兩個(gè)白球和3個(gè)黑球,從中不放回拿出兩個(gè)球,并且每次只拿一個(gè)球.
(1)“第一次抽到黑球”的概率是
 
;
(2)“第一次抽到白球”的概率是
 
;
(3)“第二次抽到黑球”的概率是
 
;
(4)“第二次抽到白球”的概率是
 
;
(5)“兩次都抽到白球”的概率是
 

(6)“第一次抽到黑球,第二次抽到白球”的概率是
 
;
(7)“沒有抽到黑球”的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2ax+blnx-1,設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為y=0.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)設(shè)函數(shù)g(x)=mf(x)+
x2
2
-mx.
(i)若m∈R,求函數(shù)g(x)的單調(diào)區(qū)間;
(ii)若1<m<3,求證:當(dāng)x∈[1,e]時(shí),g(x)<
e2
2
-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)當(dāng)f(x)=
x+1
x
,則f(x)的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①兩個(gè)變量間的相關(guān)系數(shù)r越小,說明兩變量間的線性相關(guān)程度越低;
②已知線性回歸方程為
?
y
=3+2
?
x
,當(dāng)變量x增加1個(gè)單位,其預(yù)報(bào)值平均增加2個(gè)單位;
③某項(xiàng)測試成績滿分為10分,現(xiàn)隨機(jī)抽取30名學(xué)生參加測試,得分如圖所示,假設(shè)得分值的中位數(shù)為me,平均值為
.
x
,眾數(shù)為mo,則me=mo
.
x
;
④設(shè)a、b∈R,若a+b≠6,則a≠3或b≠3;
⑤不等式|x|+|x-1|<a的解集為φ,則a<1.
其中正確命題的序號(hào)是
 
(把所有正確命題的序號(hào)都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:如圖,AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求弧AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x∈{-2,-1,0,1,2}時(shí),函數(shù)y=x2-1的值域是
 

查看答案和解析>>

同步練習(xí)冊答案