分析 分別求出集合A、B,求出A∩B,通過討論a的范圍,求出集合C,根據(jù)充分必要條件結(jié)合集合的包含關(guān)系,求出a的范圍即可.
解答 解:∵A={x||x-2|<1}={x|1<x<3},
B={x|$\frac{5}{x-1}$≥1}={x|1<x≤6},
∴A∩B=(1,3),
∵(2a-1)x<a,x>0,a>0,
∴2a-1>0即a>$\frac{1}{2}$時,不等式的解集是:{x|0<x<$\frac{a}{2a-1}$},
2a-1<0時,即0<a<$\frac{1}{2}$時,不等式的解集是{x|x>0},
C={x|(2a-1)x<a,x>0}={x|0<x<$\frac{a}{a-1}$}或{x|x>0},
若“x∈A∩B”是“x∈C”的充分不必要條件,
即(1,3)⊆(0,$\frac{a}{a-1}$),或(1,3)⊆(0,+∞),
故$\frac{a}{a-1}$≥3,解得:0<a≤$\frac{3}{2}$,
故答案為:(0,$\frac{3}{2}$].
點評 本題考查了充分必要條件,考查集合的運算,是一道基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | σ4 | B. | σ5 | C. | σ2τ | D. | τσ2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 關(guān)于直線x=0對稱 | B. | 關(guān)于直線x=π對稱 | C. | 關(guān)于點($\frac{π}{8}$,0)對稱 | D. | 關(guān)于點($\frac{π}{8}$,2)對稱 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com