【題目】某企業(yè)生產(chǎn)一種產(chǎn)品,質(zhì)量測試分為:指標(biāo)不小于為一等品;指標(biāo)不小于且小于為二等品;指標(biāo)小于為三等品。其中每件一等品可盈利元,每件二等品可盈利元,每件三等品虧損元,F(xiàn)對學(xué)徒甲和正式工人乙生產(chǎn)的產(chǎn)品各件的檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | ||||||
甲 | ||||||
乙 |
根據(jù)上表統(tǒng)計得到甲、乙生產(chǎn)產(chǎn)品等級的頻率分別估計為他們生產(chǎn)產(chǎn)品等級的概率。求:
(1)乙生產(chǎn)一件產(chǎn)品,盈利不小于元的概率;
(2)若甲、乙一天生產(chǎn)產(chǎn)品分別為件和件,估計甲、乙兩人一天共為企業(yè)創(chuàng)收多少元?
(3)從甲測試指標(biāo)為與乙測試指標(biāo)為共件產(chǎn)品中選取件,求兩件產(chǎn)品的測試指標(biāo)差的絕對值大于的概率.
【答案】(1) ;(2) 元;(3)
【解析】
(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于25元”,即該產(chǎn)品的測試指標(biāo)不小于80,由此能求出乙生產(chǎn)一件產(chǎn)品,盈利不小于25元的概率.
(2)由表格知甲生產(chǎn)的一等品、二等品、三等品比例為即,所以甲一天生產(chǎn)30件產(chǎn)品,其中一等品有3件,二等品有21件,三等品有6件;由表格知乙生產(chǎn)的一等品、二等品、三等品比例為,所以乙一天生產(chǎn)20件產(chǎn)品,其中一等品有6件,二等品有12件,三等品有2件,由此能求出甲、乙兩人一天共為企業(yè)創(chuàng)收1195元.
(3)設(shè)甲測試指標(biāo)為,的7件產(chǎn)品用,,,,,,表示,乙測試指標(biāo)為,的7件產(chǎn)品用,表示,利用列舉法能求出兩件產(chǎn)品的測試指標(biāo)差的絕對值大于10的概率.
(1)設(shè)事件表示“乙生產(chǎn)一件產(chǎn)品,盈利不小于元”,即該產(chǎn)品的測試指標(biāo)不小于,則;
(2)甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;
三等品有件;
甲一天生產(chǎn)件產(chǎn)品,其中一等品有件;二等品有件;
三等品有
,即甲、乙兩人一天共為企業(yè)創(chuàng)收元;
(3)設(shè)甲測試指標(biāo)為的件產(chǎn)品用,,,,表示,乙測試指標(biāo)為的件產(chǎn)品用,表示,用(,且)表示從件產(chǎn)品中選取件產(chǎn)品的一個結(jié)果.
不同結(jié)果為,,,,,,,,
,,,,,,,,,
,,,,,共有36個不同結(jié)果.
設(shè)事件表示“選取的兩件產(chǎn)品的測試指標(biāo)差的絕對值大于”,即從甲、乙生產(chǎn)的產(chǎn)品中各取件產(chǎn)品,不同的結(jié)果為,,,,,,,,,,,,,,共有個不同結(jié)果.
則.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進(jìn)三個等級進(jìn)行學(xué)生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學(xué)生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
表二:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(2)由表中統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.
(1)若| ﹣ |= ,求證: ⊥ ;
(2)設(shè) =(0,1),若 + = ,求α,β的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求經(jīng)過直線L1:3x + 4y – 5 = 0與直線L2:2x – 3y + 8 = 0的交點M,且滿足下列條件的直線方程
(1)與直線2x + y + 5 = 0平行 ;
(2)與直線2x + y + 5 = 0垂直;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點處的切線與直線垂直.
(1)求函數(shù)的極值;
(2)若在上恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 ,其中.函數(shù)的圖象過點,點與其相鄰的最高點的距離為4.
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)計算的值;
(Ⅲ)設(shè)函數(shù),試討論函數(shù)在區(qū)間 [0,3] 上的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)F1 , F2是雙曲線C: (a>0,b>0)的兩個焦點,P是C上一點,若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù),.
(1)若在上單調(diào)遞增,求正數(shù)的最大值;
(2)若函數(shù)在內(nèi)恰有一個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足a1=2,an+1-an=3·22n-1.
(1)求數(shù)列{an}的通項公式;
(2)令bn=nan,求數(shù)列{bn}的前n項和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com