如圖,在平面四邊形中,.
(1)求的值;
(2)若,,求的長(zhǎng).
(1) (2)
解析試題分析:(1)題目已知三角形的三條邊,利用的余弦定理即可得到該角的余弦值.
(2)利用(1)問(wèn)得到的的余弦結(jié)合正余弦之間的關(guān)系即可求的該角的正弦值,再利用正余弦之間的關(guān)系即可得到,而與之差即為,則利用正弦的和差角公式即可得到角的正弦值,再利用三角形的正弦定理即可求的邊長(zhǎng).
(1)由關(guān)于的余弦定理可得
,所以.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/7c/e/w0gzd.png" style="vertical-align:middle;" />為四邊形內(nèi)角,所以且,則由正余弦的關(guān)系可得且,再由正弦的和差角公式可得
,再由的正弦定理可得
.
考點(diǎn):三角形正余弦定理 正余弦之間的關(guān)系與和差角公式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對(duì)的邊,且(2b+c)cosA十a(chǎn)cosC =0。
(1)求角A的大;
(2)求的最大值,并求取得最大值時(shí)角B、C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)M是弧度為的∠AOB的角平分線上的一點(diǎn),且OM=1,過(guò)M任作一直線與∠AOB的兩邊分別交OA、OB于點(diǎn)E,F(xiàn),記∠OEM=x.
(1)若時(shí),試問(wèn)x的值為多少?(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
的內(nèi)角所對(duì)的邊分別為.
(1)若成等差數(shù)列,證明:;
(2)若成等比數(shù)列,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知中,是三個(gè)內(nèi)角的對(duì)邊,關(guān)于的不等式的解集是空集.
(1)求角的最大值;
(2)若,的面積,求當(dāng)角取最大值時(shí),的值.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知、、分別為的三邊、、所對(duì)的角,向量,,且.
(1)求角的大。
(2)若,,成等差數(shù)列,且,求邊的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量m=(sin ,1),n=(cos ,cos2).記f(x)=m·n.
(1)若f(α)=,求cos(-α)的值;
(2)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,且滿足(2a-c)cos B=bcos C,若f(A)=,試判斷△ABC的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com