5.求直線l:3x-y-6=0被圓C:(x-1)2+(y-2)2=5截得的弦AB的長為  (  )
A.2B.$4\sqrt{2}$C.$\sqrt{10}$D.$2\sqrt{10}$

分析 求出圓的圓心、半徑,求出圓心到直線的距離,由此利用勾股定理能求出弦長.

解答 解:圓C:(x-1)2+(y-2)2=5的圓心C(1,2),半徑r=$\sqrt{5}$,
圓心C(1,2)到直線l的距離d=$\frac{|3-2-6|}{\sqrt{9+1}}$=$\frac{\sqrt{10}}{2}$,
∴|AB|=2$\sqrt{{r}^{2}-jxl7bcs^{2}}$=2$\sqrt{5-\frac{10}{4}}$=$\sqrt{10}$.
故選:C.

點評 本題考查弦長的求法,考查直線方程、圓、點到直線的距離公式、勾股定理等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,設(shè)A,B兩點在涪江的兩岸,一測量者在A的同側(cè)所在的江岸邊選定一點C,
測出AC的距離為50m,∠ACB=45°,∠CAB=105°.則A,B兩點間的距離為( 。
A.$50\sqrt{2}$mB.50mC.$50\sqrt{3}$mD.$50\sqrt{6}$m

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.下表是檢測某種濃度的農(nóng)藥隨時間x(秒)滲入某種水果表皮深度y(微米)的一組結(jié)果.
時間x(秒)510152030
深度y(微米)610101316
(1)在規(guī)定的坐標系中,畫出 x,y 的散點圖;
(2)求y與x之間的回歸方程,并預測40秒時的深度(回歸方程精確到小數(shù)點后兩位;預測結(jié)果精確到整數(shù)).
回歸方程:$\widehat{y}$=bx+a,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為2ρsinθ+ρcosθ=10,曲線C1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α為參數(shù)).
(1)求曲線C1的普通方程;
(2)若點M在曲線C1上運動,試求出M到曲線C的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.計算$\int\begin{array}{l}1+e\\ 2\end{array}\frac{1}{x-1}dx$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.在平面直角坐標xOy中,已知圓C1:x2+y2=4,圓C2:(x-2)2+y2=4.
(1)在以O(shè)為極點,x軸正半軸為極軸的極坐標系中,分別求圓C1,C2的極坐標方程;
(2)求圓C1與C2的公共弦的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.下列參數(shù)方程能與方程y2=x表示同一曲線的是(  )
A.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t為參數(shù))
B.$\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$(t為參數(shù))
C.$\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$(t為參數(shù))
D.$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$(t為參數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知兩個具有線性相關(guān)關(guān)系的變量的一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),由這些數(shù)據(jù)得到的回歸直線l的方程為$\widehat{y}$=$\widehatx+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,則下列各點中一定在l上的是(  )
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在極坐標系中,過點A(4,-$\frac{π}{2}$)引圓ρ=4sinθ的一條切線,則切線長為4$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案