19.如圖,在平行四邊形OABC中,過點C(1,3)做CD⊥AB,垂足為點D,試求CD所在直線的一般式方程.

分析 根據(jù)原點坐標和已知的C點坐標,求出直線OC的斜率;根據(jù)平行四邊形的兩條對邊平行得到AB平行于OC,又CD垂直與AB,所以CD垂直與OC,由(1)求出的直線OC的斜率,根據(jù)兩直線垂直時斜率乘積為-1,求出CD所在直線的斜率,然后根據(jù)求出的斜率和點C的坐標寫出直線CD的方程即可.

解答 解:因為點O(0,0),點C(1,3),
所以O(shè)C所在直線的斜率為${k_{OC}}=\frac{3-0}{1-0}=3$.(2分),
在平行四邊形OABC中,AB∥OC,因為CD⊥AB,所以CD⊥OC.
所以 CD所在直線的斜率為${k_{CD}}=-\frac{1}{3}$.(6分)
所以CD所在直線方程為$y-3=-\frac{1}{3}(x-1)$,即x+3y-10=0.(10分)

點評 此題考查學生會根據(jù)兩點的坐標求出過兩點直線方程的斜率,掌握兩直線平行時斜率所滿足的條件,會根據(jù)一點和斜率寫出直線的點斜式方程,是一道綜合題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=xlnx+x2-ax+2(a∈R)有兩個不同的零點x1,x2
(1)求實數(shù)a的取值范圍.
(2)求證:x1+x2>2.
(3)求證:x1•x2>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.(1)求以橢圓$\frac{x^2}{8}+\frac{y^2}{5}=1$的焦點為頂點,以橢圓的頂點為焦點的雙曲線方程
(2)求此雙曲線方程的實半軸長,虛半軸長,離心率,漸近線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.

$\overline x$$\overline y$$\overline w$${\sum_{i=1}^8{({x_i}-\overline x)}^2}$${\sum_{i=1}^8{({w_i}-\overline w)}^2}$$\sum_{i=1}^8{({x_i}-\overline x)}({y_i}-\overline y)$$\sum_{i=1}^8{({w_i}-\overline w)}({y_i}-\overline y)$
46.656.36.8289.81.61469108.8
表中wi=$\sqrt{x_i}$,$\overline w=\frac{1}{8}\sum_{i=1}^8{w_i}$
(1)若根據(jù)散點圖用y=c+d$\sqrt{x}$表示年銷售量y關(guān)于年宣傳費x的回歸方程,試根據(jù)表中數(shù)據(jù),求c,d的值;
(2)已知這種產(chǎn)品的年利率z與x、y的關(guān)系為z=0.2y-x,根據(jù)(1)的結(jié)果回答下列問題:(i)年宣傳費x=49時,年銷售量及年利潤的預報值是多少?
(ii)年宣傳費x為何值時,年利潤的預報值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為:β=$\frac{{\sum_{i=1}^n{({v_i}-\overline v)({u_i}-\overline u)}}}{{\sum_{i=1}^n{{{({u_i}-\overline u)}^2}}}}$α=$\overline v-β\overline u$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.利用“長方體ABCD-A1B1C1D1中,四面體A1BC1D”的特點,求得四面體PMNR(其中PM=NR=$\sqrt{10}$,PN=MR=$\sqrt{13}$,MN=PR=$\sqrt{5}$)的外接球的表面積為(  )
A.14πB.16πC.13πD.15π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知平面內(nèi)有A(-2,1),B(1,4),使$\overrightarrow{AC}$=$\frac{1}{2}$$\overrightarrow{CB}$成立的點C坐標為(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.下列命題中:
(1)a=4,A=30°,若△ABC唯一確定,則0<b≤4.
(2)若點(1,1)在圓x2+y2+mx-y+4=0外,則m的取值范圍是(-5,+∞);
(3)若曲線$\frac{{x}^{2}}{4+k}$+$\frac{{y}^{2}}{1-k}$=1表示雙曲線,則k的取值范圍是(1,+∞]∪(-∞,-4];
(4)將函數(shù)y=cos(2x-$\frac{π}{3}$)(x∈R)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)y=cos2x的圖象.
(5)已知雙曲線方程為x2-$\frac{{y}^{2}}{2}$=1,則過點P(1,1)可以作一條直線l與雙曲線交于A,B兩點,使點P是線段AB的中點.正確的是(2),(5)(填序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}|2x+1|,x<1\\ ln(x-1),x>1\end{array}$,g(x)=x2-2x+2m2-1,若函數(shù)y=f(g(x))-m有6個零點則實數(shù)m的取值范圍是$(0,\frac{3}{4})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.
(1)求證:AA1⊥平面ABC;
(2)求二面角A1-BC1-B1的余弦值;
(3)在線段BC1上是否存在點D,使得AD⊥A1B?若存在,求出$\frac{BD}{B{C}_{1}}$的值,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案