A. | $(1,\sqrt{2})$ | B. | $(1,\sqrt{3})$ | C. | $(\sqrt{3},2)$ | D. | $(\sqrt{2},2)$ |
分析 利用正弦定理把邊化成角的正弦,化簡(jiǎn)整理可求得C,進(jìn)而根據(jù)正弦定理求得a的表達(dá)式,根據(jù)題意求得A的范圍,進(jìn)而求得a的范圍.
解答 解:∵acosC=csinA,
∴sinAcosC=sinCsinA,
∵sinA≠0,
∴cosC=sinC,
∴C=$\frac{π}{4}$,
∵$\frac{a}{sinA}$=$\frac{c}{sinC}$=$\frac{\sqrt{2}}{\frac{\sqrt{2}}{2}}$=2,
∴a=2sinA,
∵A+B=$\frac{3π}{4}$,
∴B=$\frac{3π}{4}$-A,
要是三角形有兩個(gè)解,需B為銳角,
∴A>$\frac{π}{4}$,
∵A=$\frac{3π}{4}$-B,
∴A<$\frac{3π}{4}$,
∴$\frac{π}{4}$<A<$\frac{3π}{4}$,
∴2sinA∈($\sqrt{2}$,2)
故選:D.
點(diǎn)評(píng) 本題主要考查了正弦定理的應(yīng)用,解三角形問(wèn)題.考查了學(xué)生的推理能力和細(xì)心程度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,2-2$\sqrt{2}$]∪[2+2$\sqrt{2}$,+∞) | B. | (-2,2-2$\sqrt{2}$) | C. | [2-2$\sqrt{2}$,2+2$\sqrt{2}$] | D. | (-1,2-2$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 大前提 | B. | 小前提 | C. | 結(jié)論 | D. | 無(wú)錯(cuò)誤 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com