設(shè)直線與曲線有三個(gè)不同的交點(diǎn),且,則直線的方程為_________________。

試題分析:因?yàn),直線與曲線有三個(gè)不同的交點(diǎn),
,所以,曲線關(guān)于(0,1)點(diǎn)對稱。
設(shè)直線方程為,
解得,。
故所求直線方程為。
點(diǎn)評:中檔題,通過認(rèn)識函數(shù)圖像的對稱性,靈活的設(shè)出方程形式,利用“幾何條件”,得到k的方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的三外頂點(diǎn)分別為.
(1)求邊AC所在的直線方程;
(2)求AC邊上的中線BD所在的直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

內(nèi)一點(diǎn)P(3,0),則過點(diǎn)P的最短弦所在直線方程為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a,b滿足a+2b=1,則直線ax+3y+b=0必過定點(diǎn)(      )
A.(-,)B. (,)C. (, -)D. (, -)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線與冪函數(shù)的圖象相切于點(diǎn),則直線的方程為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知直線,給出如下結(jié)論:
①不論為何值時(shí),都互相垂直;
②當(dāng)變化時(shí), 分別經(jīng)過定點(diǎn)A(0,1)和B(-1,0);
③不論為何值時(shí), 都關(guān)于直線對稱;
④當(dāng)變化時(shí), 的交點(diǎn)軌跡是以AB為直徑的圓(除去原點(diǎn)).
其中正確的結(jié)論有( ).
A.①③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直線x+m2y+6=0與直線(m-2)x+3my+2m=0沒有公共點(diǎn),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義:設(shè)分別為曲線上的點(diǎn),把兩點(diǎn)距離的最小值稱為曲線的距離.
(1)求曲線到直線的距離;
(2)若曲線到直線的距離為,求實(shí)數(shù)的值;
(3)求圓到曲線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求滿足下列條件的直線方程:
(1)經(jīng)過兩條直線的交點(diǎn),且平行于直線;
(2)經(jīng)過兩條直線的交點(diǎn),且垂直于直線.

查看答案和解析>>

同步練習(xí)冊答案