15.已知集合A={x|3<x<7},B={x|m<x<8},m∈R.
(1)當m=1時,求A∩B
(2)若A⊆B,求實數(shù)m的取值范圍.

分析 (1)當m=1時,集合A={x|3<x<7},B={x|1<x<8},由此能求出A∩B.
(2)利用集合的子集的性質(zhì)和不等式性質(zhì)能求出實數(shù)m的取值范圍.

解答 解:(1)當m=1時,集合A={x|3<x<7},B={x|1<x<8},
∴A∩B={x|3<x<7}.
(2)∵集合A={x|3<x<7},B={x|m<x<8},m∈R,A⊆B,
∴m≤3,
∴實數(shù)m的取值范圍是(-∞,3].

點評 本題考查交集的求法,考查實數(shù)的取值范圍的求法,是基礎題,解題時要認真審題,注意交集、子集性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知拋物線y2=8x的焦點為F,過F作直線l交拋物線與A、B兩點,設|FA|=m,|FB|=n,則m.n的取值范圍(  )
A.(0,4]B.(0,14]C.[4,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=x|2a-x|+2x,a∈R.
(1)若a=0,判斷函數(shù)y=f(x)的奇偶性,并加以證明;
(2)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的取值范圍;
(3)若存在實數(shù)a∈[-2,2],使得關(guān)于x的方程f(x)-tf(2a)=0有三個不相等的實數(shù)根,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.若F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,O為坐標原點,P在雙曲線左支上(點P異于左頂點),M在右準線上,且滿足$\overrightarrow{{F}_{1}O}$=$\overrightarrow{PM}$.
(1)若$\frac{\overrightarrow{OP}•\overrightarrow{OM}}{|\overrightarrow{OP}||\overrightarrow{OM}|}$=$\frac{\overrightarrow{O{F}_{1}}•\overrightarrow{OP}}{|\overrightarrow{O{F}_{1}}||\overrightarrow{OP}|}$,求此雙曲線的離心率;
(2)在(1)的條件下,此雙曲線又過點N(2,$\sqrt{3}$),求雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.求函數(shù)y=cos($\frac{9π}{2}$+x)+sin2x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若向量$\overrightarrow{a,}\overrightarrow$滿足$|\overrightarrow{a}|$=$\sqrt{3}$,$|\overrightarrow|$=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為150°,則|2$\overrightarrow{a}$-$\overrightarrow$|=$2\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知$\overrightarrow{a}$與$\overrightarrow$是夾角為60°的單位向量,2$\overrightarrow{a}$-$\overrightarrow$與k$\overrightarrow{a}$+$\overrightarrow$的夾角為120°,則實數(shù)k=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,AB=AC=$\sqrt{5}$,BC=2,點D是AC的中點,點E在AB上,且$\overrightarrow{BD}$$•\overrightarrow{CE}$=-$\frac{3}{8}$,則$\overrightarrow{DE•}$$\overrightarrow{BC}$=(  )
A.-$\frac{3}{2}$B.$\frac{2}{3}$C.-$\frac{2}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.tanα,tanβ為方程x2-2x-1=0的根,則tan(α+β)=1.

查看答案和解析>>

同步練習冊答案