10.求函數(shù)y=x-ex+1的單調(diào)區(qū)間、極值.

分析 由求導(dǎo)公式和法則求出y′=1-ex(x∈R),令y′=0得x=0,列表格由導(dǎo)數(shù)與函數(shù)單調(diào)性、極值的關(guān)系,求出函數(shù)的單調(diào)區(qū)間及極值.

解答 解:由題意得y=x-ex+1,x∈R,
∴y′=1-ex,令y′=0得x=0.
于是當(dāng)x變化時(shí),y′,y的變化情況如下表:

x(-∞,0)0(0,+∞)
f′(x)+0-
f(x)單調(diào)遞增0單調(diào)遞減
∴函數(shù)的單調(diào)遞減區(qū)間是(0,+∞),單調(diào)遞增區(qū)間是(-∞,0),
函數(shù)在x=0處取得極大值,極大值為0,無極小值.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)區(qū)間及極值的求法,導(dǎo)數(shù)與函數(shù)增減區(qū)間、極值關(guān)系的應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)P:方程$\frac{{x}^{2}}{3-a}$+$\frac{{y}^{2}}{1+a}$=1表示橢圓,Q:(a-2)x2+2(a-2)x-4<0對(duì)任意實(shí)數(shù)x恒成立,若P∧Q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\sqrt{3}sinωx+cosωx(ω>0)$的最小正周期為π,把f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,得到函數(shù)R的圖象.則g(x)的解析式為(  )
A.g(x)=2sin2xB.$g(x)=2sin(2x+\frac{2π}{3})$C.g(x)=2cos2xD.$g(x)=2sin(2x+\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{3}}}{2}$,其左、右頂點(diǎn)分別為A1(-2,0),A2(2,0).過點(diǎn)D(1,0)的直線l與該橢圓相交于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線A1M與NA2的斜率分別為k1,k2,試問:是否存在實(shí)數(shù)λ,使得k2=λk1?若存在,求出λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題,正確命題個(gè)數(shù)為( 。
①若tanA•tanB>1,則△ABC一定是鈍角三角形;
②若sin2A=sin2B,則△ABC一定是等腰三角形;
③若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC一定是等邊三角形;
④在銳角三角形ABC中,一定有sinA>cosB.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某高!敖y(tǒng)計(jì)初步”課程的教師隨機(jī)調(diào)查了一些學(xué)生,具體數(shù)據(jù)如下表所示,根據(jù)此資料,你認(rèn)為選修統(tǒng)計(jì)專業(yè)是否與性別有關(guān)系?
沒選統(tǒng)計(jì)專業(yè)選統(tǒng)計(jì)專業(yè)
1310
720

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=x(x+k)(x+2k),且f′(0)=8,則k=( 。
A.2B.-2C.±2D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如果函數(shù)f(x)=sin(2πx+θ)(0<θ<2π)的最小正周期是T,且當(dāng)x=1時(shí)取得最大值,那么( 。
A.T=1,θ=$\frac{π}{2}$B.T=1,θ=πC.T=2,θ=πD.T=2,θ=$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+a(1+lnx)(a≥0).
(1)求曲線y=f(x)在(2,f(2))處與直線y=-x+1垂直的切線方程.
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案