已知函數(shù) .

(1)討論函數(shù)的單調(diào)性;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)證明:.

 

【答案】

解:(1)的定義域為(0,+∞),…2分

時,>0,故在(0,+∞)單調(diào)遞增;

時,<0,故在(0,+∞)單調(diào)遞減;……………4分

當-1<<0時,令=0,解得.

則當時,>0;時,<0.

單調(diào)遞增,在單調(diào)遞減. …………6分

(2)因為,所以

時,恒成立

,則,               ……………8分

因為,由,

且當時,;當時,.

所以上遞增,在上遞減.所以,

                               ……………………10分

(3)由(2)知當時,有,當時,

,則,即      …………12分

所以,,…,,

相加得

所以,.……………………14分

 【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1-x2
+
x2-1
的定義域是(  )
A、[-1,1]
B、{-1,1}
C、(-1,1)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(1-b)x+b,x<0
(b-3)x2+2,x≥0
,在(-∞,+∞)上是減函數(shù),則實數(shù)b的范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-
a
x
,g(x)=
lnx
x
,且函數(shù)f(x)在點(1,f(1))處的切線與直線x+y+3=0垂直.
(I)求a的值;
(II)如果當x∈(0,1)時,t•g(x)≤f(x)恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=
1
x+1
的定義域為集合A,集合B=(-2,+∞),則集合(CRA)∩B=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請考生注意:重點高中學生做(2)(3).一般高中學生只做(1)(2).
已知函數(shù)f(x)=(1-a)x-lnx-
a
x
-1(a∈R)

(1)若曲線y=f(x)在x=1和x=3處的切線互相平行,求a的值;
(2)當a>0時,討論f(x)的單調(diào)性;
(3)當a=
3
4
時,設g(x)=x2-bx+1,若對任意x1∈(0,2],都存在x2∈(0,2],都存在x2∈[1,2]使f(x1)≤g(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

同步練習冊答案