A. | $\frac{3}{2}$ | B. | -$\frac{3}{2}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
分析 由$\overrightarrow{a}⊥\overrightarrow$便可得出$\overrightarrow{a}•\overrightarrow=0$,從而進(jìn)行向量數(shù)量積的坐標(biāo)運(yùn)算即可得到2cosθ+3sinθ=0,從而便可得出tanθ的值.
解答 解:∵$\overrightarrow{a}⊥\overrightarrow$;
∴$\overrightarrow{a}•\overrightarrow=0$;
即2cosθ+3sinθ=0;
∴$sinθ=-\frac{2}{3}cosθ$;
∴$tanθ=-\frac{2}{3}$.
故選:D.
點(diǎn)評(píng) 考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算,以及切化弦公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x+1)2+(y-2)2=5 | B. | (x-2)2+(y-1)2=5 | C. | (x-1)2+(y+2)2=5 | D. | (x-2)2+(y+1)2=5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1007 | B. | 1008 | C. | 1009 | D. | 1010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com