13.設命題p:不等式x-x2≤a對?x≥1恒成立,命題q:關于x的方程x2-ax+1=0在R上有解.
(1)若?p為假命題,求實數(shù)a的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,求實數(shù)a的取值范圍.

分析 (1)若?p為假命題,則p為真命題,進而可得實數(shù)a的取值范圍;
(2)若“p∧q”為假命題,“p∨q”為真命題,則p真q假,或者p假q真,進而可得實數(shù)a的取值范圍;

解答 解:(1)∵¬p為假命題,
∴命題p為真命題;
∵x-x2在x∈[1,+∞)單調(diào)遞減,
∴x-x2的最大值為0,
故a≥0;
(2)命題q:△=a2-4≥0,
∴a≥2或a≤-2,
“p∧q”為假命題,“p∨q”為真命題,等價于p真q假,或者p假q真,
則$\left\{{\begin{array}{l}{a≥0}\\{-2<a<2}\end{array}}\right.$或$\left\{{\begin{array}{l}{a<0}\\{a≤-2或a≥2}\end{array}}\right.$,
∴實數(shù)a的取值范圍為a≤-2或0≤a<2.

點評 本題以命題的真假判斷與應用為載體,考查了復合命題,函數(shù)恒成立,方程的根等知識點,難度中檔.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

3.下列命題是正確的為( 。
A.若x=y,則$\sqrt{x}$=$\sqrt{y}$B.若x2=1,則x=1C.若$\frac{1}{x}$=$\frac{1}{y}$,則x=yD.若x<y,則 x2<y2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)滿足f(x)=ax2+bx+c(a≠0),滿足f(x+1)-f(x)=2x,且f(0)=1,
(1)函數(shù)f(x)的解析式:
(2)函數(shù)f(x)在區(qū)間[-1,1]上的最大值和最小值:
(3)若當x∈R時,不等式f(x)>3x-a恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)y=$\sqrt{x+1}$+lg(2-x)的定義域是集合M,集合N={x|x(x-3)<0}
(1)求M∪N;
(2)求(∁RM)∩N.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=${log_{\frac{1}{2}}}(-{x^2}+2x)$的單調(diào)遞增區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知函數(shù)f(x)=2ln(3x)+8x+1,則$\lim_{△x→0}\frac{{f({1-2△x})-f(1)}}{△x}$的值為( 。
A.10B.-10C.-20D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.橢圓4x2+y2=2上的點到直線2x-y-8=0 的距離的最小值為( 。
A.$\frac{6\sqrt{5}}{5}$B.$\frac{3\sqrt{5}}{5}$C.3D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.直線l1:y=x+a和l2:y=x+b將單位圓C:x2+y2=1分成長度相等的四段弧,則a2+b2=(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若函數(shù)f(x)=(a-1)x在(-∞,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

同步練習冊答案