【題目】動點P為橢圓 (a>b>0)上異于橢圓頂點A(a,0)、B(﹣a,0)的一點,F(xiàn)1 , F2為橢圓的兩個焦點,動圓M與線段F1P、F1F2的延長線級線段PF2相切,則圓心M的軌跡為除去坐標軸上的點的(
A.拋物線
B.橢圓
C.雙曲線的右支
D.一條直線

【答案】D
【解析】解:如圖畫出圓M,切點分別為E、D、G,
由切線長相等定理知F1G=F1E,PD=PE,F(xiàn)2D=F2G,
根據(jù)橢圓的定義知PF1+PF2=2a,
即有PF1+PF2=F1E+DF2(由于PD=PE)
=F1G+F2D(由于F1G=F1E)
=F1G+F2G=2a,
即為2F2G=2a﹣2c,F(xiàn)2G=a﹣c,
即點G與點A重合,
即有點M在x軸上的射影是長軸端點A,
M點的軌跡是垂直于x軸的一條直線(除去A點).
故選:D.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線y2=8x的焦點為F,過點F作直線l與拋物線分別交于A,B兩點,若點M滿足 = + ),過M作y軸的垂線與拋物線交于點P,若|PF|=4,則M點的橫坐標為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產物,其兼具文化性和社會性,是精神文明建設成果的一個重要指標和象征.2015年某高校社會實踐小組對某小區(qū)跳廣場舞的人的年齡進行了凋查,隨機抽取了40名廣場舞者進行調查,將他們年齡分成6段:[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如圖所示的頻率分布直方圖.

(1)估計在40名廣場舞者中年齡分布在[40,70)的人數(shù);
(2)求40名廣場舞者年齡的中位數(shù)和平均數(shù)的估計值;
(3)若從年齡在[20,40)中的廣場舞者中任取2名,求這兩名廣場舞者年齡在[30,40)中的人數(shù)X的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭進行理財投資,有兩種方式,甲為投資債券等穩(wěn)健型產品,乙為投資股票等風險型產品,設投資甲、乙兩種產品的年收益分別為、萬元,根據(jù)長期收益率市場預測,它們與投入資金萬元的關系分別為,,(其中,都為常數(shù)),函數(shù),對應的曲線,如圖所示

(1)求函數(shù)、的解析式

(2)若該家庭現(xiàn)有萬元資金,全部用于理財投資,問:如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內可填入的條件是(

A.S>27
B.S≤27
C.S≥26
D.S<26

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線 )的焦點為 ,已知點 , 為拋物線上的兩個動點,且滿足 .過弦 的中點 作拋物線準線的垂線 ,垂足為 ,則 的最大值為__________

【答案】1

【解析】,在三角形ABF中,用余弦定理得到

,

故最大值為1.

故答案為:1.

點睛:本題主要考查了拋物線的簡單性質.解題的關鍵是利用了拋物線的定義。一般和拋物線有關的小題,很多時可以應用結論來處理的;平時練習時應多注意拋物線的結論的總結和應用。尤其和焦半徑聯(lián)系的題目,一般都和定義有關,實現(xiàn)點點距和點線距的轉化。

型】填空
束】
17

【題目】 的內角 , 所對的邊分別為 , ,且 , .

(1)當 時,求 的值;

(2)當的面積為 時,求的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,.

(1)證明:面

(2)求點到平面的距離;

(3)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線半徑為2的圓相切,圓心軸上且在直線的上方.

1)求圓的方程

2)過點的直線與圓交于兩點軸上方),問在軸正半軸上是否存在定點,使得軸平分?若存在求出點的坐標;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 (a>b>0)的焦點在圓x2+y2=3上,且離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過原點O的直線l與橢圓C交于AB兩點,F為右焦點,若△FAB為直角三角形,求直線l的方程.

查看答案和解析>>

同步練習冊答案