【題目】某家庭進(jìn)行理財(cái)投資,有兩種方式,甲為投資債券等穩(wěn)健型產(chǎn)品,乙為投資股票等風(fēng)險(xiǎn)型產(chǎn)品,設(shè)投資甲、乙兩種產(chǎn)品的年收益分別為、萬(wàn)元,根據(jù)長(zhǎng)期收益率市場(chǎng)預(yù)測(cè),它們與投入資金萬(wàn)元的關(guān)系分別為,(其中,,都為常數(shù)),函數(shù),對(duì)應(yīng)的曲線,如圖所示

(1)求函數(shù)、的解析式

(2)若該家庭現(xiàn)有萬(wàn)元資金,全部用于理財(cái)投資,問(wèn):如何分配資金能使一年的投資獲得最大收益,其最大收益是多少萬(wàn)元?

【答案】(1)的解析式分別為,;

(2)投資甲產(chǎn)品萬(wàn)元,投資乙產(chǎn)品萬(wàn)元,可以使得一年的投資獲得最大收益為萬(wàn)

【解析】

(1)函數(shù)對(duì)應(yīng)的曲線都經(jīng)過(guò)點(diǎn),分別代入解析式,解得未知數(shù)的值,可得解析式;

(2)設(shè)投資甲產(chǎn)品為萬(wàn)元,則投資乙產(chǎn)品為萬(wàn)元,所以總收益,設(shè),則,求函數(shù)定義域內(nèi)最大值即為所求

解:(1)由函數(shù)的圖象過(guò)點(diǎn),所以;

由函數(shù)的圖象過(guò)點(diǎn),所以;

所以,.

(2)設(shè)投資甲產(chǎn)品為萬(wàn)元,則投資乙產(chǎn)品為萬(wàn)元,

則總收益,

設(shè),則,

所以時(shí),總收益最大,為萬(wàn).

答:(1)的解析式分別為,;

(2)投資甲產(chǎn)品萬(wàn)元,投資乙產(chǎn)品萬(wàn)元,可以使得一年的投資獲得最大收益為萬(wàn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,空間四邊形ABCD的對(duì)棱AD、BC成600的角,且AD=BC=a,平行于AD與BC的截面分別交AB、AC、CD、BD于E、F、G、H.

(1)求證:四邊形EFGH為平行四邊形;

(2)E在AB的何處時(shí)截面EFGH的面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有A、B兩家羽毛球球俱樂(lè)部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,A俱樂(lè)部每塊場(chǎng)地每小時(shí)收費(fèi)6元;B俱樂(lè)部按月計(jì)費(fèi),一個(gè)月中20小時(shí)以內(nèi)20小時(shí)每塊場(chǎng)地收費(fèi)90元,超過(guò)20小時(shí)的部分,每塊場(chǎng)地每小時(shí)2元,某企業(yè)準(zhǔn)備下個(gè)月從這兩家俱樂(lè)部中的一家租用一塊場(chǎng)地開(kāi)展活動(dòng),其活動(dòng)時(shí)間不少于12小時(shí),也不超過(guò)30小時(shí).

設(shè)在A俱樂(lè)部租一塊場(chǎng)地開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為,在B俱樂(lè)部租一塊場(chǎng)地開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為,試求的解析式;

問(wèn)該企業(yè)選擇哪家俱樂(lè)部比較合算,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

當(dāng)時(shí),試判斷函數(shù)在區(qū)間上的單調(diào)性,并證明;

若不等式上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過(guò)公路上的處鋪設(shè)一條南北走向的公路.在施工過(guò)程中發(fā)現(xiàn)在處的正北1百米的處有一漢代古跡.為了保護(hù)古跡,該市決定以為圓心, 1百米為半徑設(shè)立一個(gè)圓形保護(hù)區(qū).為了連通公路,欲再新建一條公路,點(diǎn) 分別在公路上,且求與圓相切.

(1)當(dāng)處2百米時(shí),求的長(zhǎng);

(2)當(dāng)公路長(zhǎng)最短時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題 :若 ,則 ,下列說(shuō)法正確的是( )

A. 命題 的否命題是“若 ,則

B. 命題的逆否命題是“若 ,則

C. 命題是真命題

D. 命題的逆命題是真命題

【答案】D

【解析】A. 命題 的否命題是若

B. 命題的逆否命題是,則

C. 命題是假命題,比如當(dāng)x=-3,就不滿足條件,故選項(xiàng)不正確.

D. 命題的逆命題是若是真命題.

故答案為:D.

型】單選題
結(jié)束】
9

【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)P為橢圓 (a>b>0)上異于橢圓頂點(diǎn)A(a,0)、B(﹣a,0)的一點(diǎn),F(xiàn)1 , F2為橢圓的兩個(gè)焦點(diǎn),動(dòng)圓M與線段F1P、F1F2的延長(zhǎng)線級(jí)線段PF2相切,則圓心M的軌跡為除去坐標(biāo)軸上的點(diǎn)的(
A.拋物線
B.橢圓
C.雙曲線的右支
D.一條直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 .

(1)求數(shù)列 通項(xiàng)公式;

(2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .

【答案】(1) (2)見(jiàn)解析

【解析】試題分析:(1)根據(jù)題意得到, ,兩式做差得到;(2)根據(jù)第一問(wèn)得到,由錯(cuò)位相減法得到前n項(xiàng)和,進(jìn)而可證和小于1.

解析:

(1)∵

當(dāng) 時(shí),

當(dāng)時(shí), ,即

∴數(shù)列 時(shí)以 為首項(xiàng), 為公差的等差數(shù)列.

.

(2)∵

由① ②得

點(diǎn)睛:這個(gè)題目考查的是數(shù)列通項(xiàng)公式的求法及數(shù)列求和的常用方法;數(shù)列通項(xiàng)的求法中有常見(jiàn)的已知的關(guān)系,求表達(dá)式,一般是寫出做差得通項(xiàng),但是這種方法需要檢驗(yàn)n=1時(shí)通項(xiàng)公式是否適用;數(shù)列求和常用法有:錯(cuò)位相減,裂項(xiàng)求和,分組求和等.

型】解答
結(jié)束】
22

【題目】已知 , 分別是橢圓 )的左、右焦點(diǎn), 是橢圓 上的一點(diǎn),且 ,橢圓 的離心率為 .

(1)求橢圓 的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓 交于不同兩點(diǎn) , ,橢圓 上存在點(diǎn) ,使得以 , 為鄰邊的四邊形 為平行四邊形( 為坐標(biāo)原點(diǎn)).

)求實(shí)數(shù) 的關(guān)系;

)證明:四邊形 的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上的點(diǎn)到它的兩個(gè)焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過(guò)這兩個(gè)焦點(diǎn),點(diǎn), 分別是橢圓的左、右頂點(diǎn).

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動(dòng)點(diǎn)(, 位于軸兩側(cè)),且直線軸平行,直線, 分別與軸交于點(diǎn), .求證: 為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案