15.已知集合A={1,2,3,4},B={x∈Z||x|≤1},則A∩(∁ZB)=( 。
A.B.{4}C.{3,4}D.{2,3,4}

分析 根據(jù)交集與補(bǔ)集的定義,進(jìn)行化簡運算即可.

解答 解:∵集合A={1,2,3,4},
B={x∈Z||x|≤1}={-1,0,1},
∴A∩(∁ZB)={2,3,4}.
故選:D.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1,記f(x)=$\frac{g(x)}{x}$.
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ax+ta-x(a>0,且a≠1)是定義在R上的偶函數(shù).
(Ⅰ)求實數(shù)t的值;
(Ⅱ)解關(guān)于x的不等式f(x)>a2x-3+a-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.解不等式不等式(2x-1)(3x+1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.樣本數(shù)據(jù):-2,-1,0,1,2的方差為( 。
A.$\sqrt{2}$B.2C.1D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}-1(-2≤x≤0)\\ x-1(0<x≤2)\end{array}\right.$,$g(x)=f(x)-\frac{1}{2}x,x∈[-2,2]$,若$g({log_2}a)+g({log_{\frac{1}{2}}}a)≤2g(\frac{1}{2})$,則實數(shù)a的取值范圍是(  )
A.$(0,\frac{1}{2}]$B.$[1,\sqrt{2}]$C.$[\frac{1}{2},2]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知角θ的頂點與原點重合,始邊與x軸的正半軸重合,終邊在直線y=-2x上,則cos2θ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線x2=2py,準(zhǔn)線方程為y+1=0,直線l過定點T(0,t)(t>0)且與拋物線交于A、B兩點,O為坐標(biāo)原點.
(1)求拋物線的方程;
(2)$\overrightarrow{OA}•\overrightarrow{OB}$是否為定值,若是,求出這個定值;若不是,請說明理由;
(3)當(dāng)t=1時,設(shè)$\overrightarrow{AT}=λ•\overrightarrow{TB}$,記|AB|=f(λ),求f(λ)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x2+3x-10≤0}
(1)若A⊆B,B={x|m-6≤x≤2m+1},求實數(shù)m的取值范圍;
(2)若B⊆A,B={x|2m-1≤x≤m+1},求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案