分析 由約束條件作出可行域,結(jié)合圖形得到使目標(biāo)函數(shù)z=-2x+y的最優(yōu)解,代入坐標(biāo)求得z=-2x+y的最值即可.
解答 解:由約束條件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ x-y+1≥0\end{array}\right.$作可行域如圖,
由圖可知,可行域中點(diǎn)A的坐標(biāo)是使目標(biāo)函數(shù)z=-2x+y取得最小值的最優(yōu)解.
在$\left\{\begin{array}{l}x+y-1=0\\ x-1=0\end{array}\right.$中,解得y=0得x=1.
∴點(diǎn)A的坐標(biāo)為(1,0).
則z=-2x+y的最小值是-2×1+0=-2.
可行域中點(diǎn)B的坐標(biāo)是使目標(biāo)函數(shù)z=-2x+y取得最小值的最優(yōu)解.
在$\left\{\begin{array}{l}x+y-1=0\\ x-y+1=0\end{array}\right.$中,解得y=1得x=0.
∴點(diǎn)B的坐標(biāo)為(0,1).
則z=-2x+y的最小值是-2×0+1=1.
z的取值范圍是:[-2,1].
故答案為:[-2,1]
點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,解答的關(guān)鍵是正確作出可行域,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
周一 | 周二 | 周三 | 周四 | 周五 | |
語(yǔ)文 | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{2}$ |
數(shù)學(xué) | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{1}{2}$ | $\frac{2}{3}$ |
外語(yǔ) | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{31}{16}$ | B. | $\frac{31}{32}$ | C. | 31 | D. | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20+2π | B. | 20+3π | C. | 24+3π | D. | 24+3π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -9 | B. | 9 | C. | -6 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com