若實數(shù)x、y滿足不等式組
y≥0
x-y≥0
2x-y-2≥0
,則x2+y2的最大值是
 
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:由約束條件作出可行域,則x2+y2為可行域內(nèi)的點到原點距離值的平方.
解答: 解:由約束條件
y≥0
x-y≥0
2x-y-2≥0
作出可行域如圖,

聯(lián)立
x-y=0
2x-y-2=0
,解得B(2,2),
由圖可知,x2+y2的最大值為|OB|2=(
22+22
)2=8

故答案為:8.
點評:本題考查了簡單的線性規(guī)劃問題,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[1-2a,a]上的奇函數(shù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a1=1,an+1=2an+n-1,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2x2-x-3<0},函數(shù)f(x)=
1
[x-(2a+1)][(a-1)-x]
的定義域為集合B.
(Ⅰ)若A∪B=(-1,3〕,求實數(shù)a的值;
(Ⅱ)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2+
2+
2+…+
2+1
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
4
x

(1)判斷f(x)在(2,+∞)上的單調(diào)性并用定義證明;
(2)求f(x)在[1,4]的最大值和最小值,及其對應(yīng)的x的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+x+p+3=0,x∈R},若A⊆R-,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若?k∈[-
2
2
,
2
2
]使a(1+k2)≤|k|
1-k2
成立,則實數(shù)a的取值范圍是( 。
A、(-∞,0]
B、(-∞,
1
4
]
C、(-∞,
2
4
]
D、(-∞,
2
8
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

0<x≤1,a=(
sinx
x
2,b=
sinx
x
,c=
si
n
2
 
x
x2
,比較a,b,c的大。

查看答案和解析>>

同步練習冊答案