9.已知下面四個(gè)命題:
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣;
(2)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1;
(3)對(duì)分類變量X和Y的隨機(jī)變量K2的觀測(cè)值k來說,k越小,“X與Y有關(guān)系”的把握程度越大;
(4)在回歸直線方程$\stackrel{∧}{y}$=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位.
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 (1)利用系統(tǒng)抽樣的定義即可判斷出;
(2)利用兩個(gè)隨機(jī)變量相關(guān)性與相關(guān)系數(shù)的絕對(duì)值越的關(guān)系即可判斷出;
(3)對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來說,k越大,“X與Y有關(guān)系”的把握程度越大,即可判斷出;
(4)利用一次函數(shù)的單調(diào)性即可判斷出

解答 解:對(duì)于(1),從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測(cè),這樣的抽樣是系統(tǒng)抽樣,正確;
對(duì)于(2),兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1,正確;
對(duì)于(3),對(duì)分類變量X與Y的隨機(jī)變量K2的觀測(cè)值k來說,k越大,“X與Y有關(guān)系”的把握程度越大,因此不正確;
對(duì)于(4),回歸直線方程$\stackrel{∧}{y}$=0.4x+12中,當(dāng)解釋變量x每增加一個(gè)單位時(shí),預(yù)報(bào)變量大約增加0.4個(gè)單位,正確
故選:D

點(diǎn)評(píng) 本題考查了概率統(tǒng)計(jì)的一個(gè)知識(shí)、簡(jiǎn)易邏輯的判定方法,考查了推理能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)m,n為兩條不同的直線,α,β為兩個(gè)不同的平面,給出下列命題:
①若m⊥α,m⊥β,則α∥β②若m∥α,m∥β,則α∥β③若m∥α,n∥α,則m∥n④若m⊥α.n⊥α,則m∥n
上述命題中,所有真命題的序號(hào)是( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≥0\\-{x^2}-2x+1,x<0\end{array}\right.$,若函數(shù)y=f(x)-m有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg(-3{x^2}+5x+2)$的定義域是( 。
A.(-$\frac{1}{3}$,+∞)B.(-$\frac{1}{3}$,1)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知α、β均為第三象限角,給出如下三個(gè)命題:①若α>β,則tanα>tanβ;②若tanα>tanβ,則cosα<cosβ;③若sinα>sinβ,則tanα<tanβ.其中正確的是①③(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=8{tan^2}θ\\ y=8tanθ\end{array}\right.$(θ為參數(shù),$θ∈({-\frac{π}{2},\frac{π}{2}})$).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,直線l的方程為$ρcos({θ-\frac{π}{4}})=-4\sqrt{2}$.
(1)求直線l的直角坐標(biāo)方程;
(2)若P為曲線C上一點(diǎn),Q為l上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.正三棱柱ABC-A1B1C1底邊長(zhǎng)為2,E、F分別為BB1,AB的中點(diǎn),設(shè)$\frac{A{A}_{1}}{AB}$=λ.
(Ⅰ)求證:平面A1CF⊥平面A1EF;
(Ⅱ)若二面角F-EA1-C的平面角為$\frac{π}{3}$,求實(shí)數(shù)λ的值,并判斷此時(shí)二面角E-CF-A1是否為直二面角,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)求證:當(dāng)a、b、c為正數(shù)時(shí),(a+b+c)($\frac{1}{a}$+$\frac{1}$+$\frac{1}{c}$)≥9
(2)已知x∈R,a=x2-1,b=2x+2,求證a,b中至少有一個(gè)不少于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.如圖所示的三角形數(shù)陣角“萊布尼茲調(diào)和三角形”,它是由整數(shù)的倒數(shù)組成的,第n行有n個(gè)數(shù),且兩端的數(shù)均為$\frac{1}{n}({n≥2})$,每個(gè)數(shù)使它下一行左右相鄰兩個(gè)數(shù)的和,如$\frac{1}{1}=\frac{1}{2}+\frac{1}{2},\frac{1}{2}=\frac{1}{3}+\frac{1}{6},\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,則第7行第5個(gè)數(shù)(從左到右)為$\frac{1}{105}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案