20.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x},x≥0\\-{x^2}-2x+1,x<0\end{array}\right.$,若函數(shù)y=f(x)-m有三個不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

分析 畫出函數(shù)y=f(x)與y=m的圖象,由圖象可得m的取值范圍

解答 解:畫出函數(shù)y=f(x)與y=m的圖象,如圖所示,
∵函數(shù)y=f(x)-m有三個不同的零點(diǎn),
∴函數(shù)y=f(x)與y=m的圖象有3個交點(diǎn),
由圖象可得m的取值范圍為(1,2),
故選:D

點(diǎn)評 本題考查了函數(shù)的零點(diǎn)的判斷及分段函數(shù)的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.四棱錐P-ABCD的底面ABCD為正方形,PA⊥底面ABCD,AB=2,若該四棱錐的所有頂點(diǎn)都在表面積為16π的同一球面上,則PA=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.對任意實(shí)數(shù)x,不等式3sinx-4cosx+c>0恒成立,則c的取值范圍是c>5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知$\overrightarrow{a}$,$\overrightarrow$是夾角為60°的兩個單位向量,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x2<4},B={-1,0,1,2,3},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{-1,0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一個正四面體的棱長為2,則這個正四面體的外接球的表面積為( 。
A.B.C.$\sqrt{6}π$D.11π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,球面上有A,B,C三點(diǎn),∠ABC=90°,BA=BC=2,球心O到平面ABC的距離為$\sqrt{2}$,則球的體積為$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知下面四個命題:
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢員每15分鐘從中抽取一件產(chǎn)品進(jìn)行某項(xiàng)指標(biāo)檢測,這樣的抽樣是系統(tǒng)抽樣;
(2)兩個隨機(jī)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對值越接近于1;
(3)對分類變量X和Y的隨機(jī)變量K2的觀測值k來說,k越小,“X與Y有關(guān)系”的把握程度越大;
(4)在回歸直線方程$\stackrel{∧}{y}$=0.4x+12中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量大約增加0.4個單位.
其中真命題的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知復(fù)數(shù)z與(z+1)2-2i 均是純虛數(shù),則z=-i.

查看答案和解析>>

同步練習(xí)冊答案