【題目】如圖,在平行四邊形中,點,,,對角線,交于點P.
(1)求直線的方程;
(2)若點E,F分別在平行四邊形的邊和上運(yùn)動,且,求的取值范圍;
(3)試寫出三角形區(qū)域(包括邊界)所滿足的線性約束條件,若在該區(qū)域上任取一點M,使,試求的取值范圍.
【答案】(1);(2);(3).
【解析】
(1)設(shè),根據(jù)利用坐標(biāo)運(yùn)算求出點坐標(biāo),進(jìn)而可求出直線的方程;
(2)設(shè),則,,利用向量的線性運(yùn)算將用表示出來,利用二次函數(shù)的性質(zhì)求出取值范圍;
(3)通過直線的方程,可得三角形區(qū)域(包括邊界)所滿足的線性約束條件,設(shè),利用將用表示出來,利用線性規(guī)劃的知識可求出的取值范圍.
解:(1)設(shè),
則,
又,且,
,
,
所以直線的方程為:,
即;
(2)設(shè),則,,
,
由(1)得直線的方程為,
所以,
,
,
;
(3),即,
,即,
所以三角形區(qū)域(包括邊界)所滿足的線性約束條件為:
,
設(shè),
則,
,整理可得,
令,則
當(dāng)取點時,取最大值,即,
當(dāng)取點時,取最小值,即,
所以的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù),).
(1)若是函數(shù)的極值點,求的值,并求的單調(diào)區(qū)間;
(2)若時都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,, ,為線段的中點,為線段上一動點(異于點),為線段上一動點,且.
(Ⅰ)求證:平面平面;
(Ⅱ)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)λ是正實數(shù),(1+λx)20的二項展開式為a0+a1x+a2x2+…+a20x20,其中a0,a1,…,a20 ,…,均為常數(shù)
(1)若a3=12a2,求λ的值;
(2)若a5≥an對一切n∈{0,1,…,20}均成立,求λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在點處的切線與直線平行.
(Ⅰ)求函數(shù)的極值;
(Ⅱ)若對于,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來了一定的增長,某紀(jì)念商品店的銷售人員為了統(tǒng)計世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費金額情況,得到如圖頻率分布表:將消費顧客超過4萬盧布的顧客定義為”足球迷”,消費金額不超過4萬盧布的顧客定義為“非足球迷”。
消費金額/萬盧布 | 合計 | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費金額的中位數(shù)與平均數(shù)(同一組中的消費金額用該組的中點值作代表;
(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再從這5人中隨機(jī)選取3人進(jìn)行問卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】省環(huán)保廳對、、三個城市同時進(jìn)行了多天的空氣質(zhì)量監(jiān)測,測得三個城市空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)共有180個,三城市各自空氣質(zhì)量為優(yōu)或良的數(shù)據(jù)個數(shù)如下表所示:
城 | 城 | 城 | |
優(yōu)(個) | 28 | ||
良(個) | 32 | 30 |
已知在這180個數(shù)據(jù)中隨機(jī)抽取一個,恰好抽到記錄城市空氣質(zhì)量為優(yōu)的數(shù)據(jù)的概率為0.2.
(1)現(xiàn)按城市用分層抽樣的方法,從上述180個數(shù)據(jù)中抽取30個進(jìn)行后續(xù)分析,求在城中應(yīng)抽取的數(shù)據(jù)的個數(shù);
(2)已知, ,求在城中空氣質(zhì)量為優(yōu)的天數(shù)大于空氣質(zhì)量為良的天數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)
(1)若函數(shù)為減函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)有兩個不同的零點,求實數(shù)的取值范圍,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com