分析 先將圓的方程化為標準式,求出圓心和半徑,通過分析可以看出,圓心在一條直線m上,半徑是定值3,所以直線l∥m,才能滿足截得的弦長是定值.
解答 解:將圓C:x2+y2-(6-2m)x-4my+5m2-6m=0化為標準式得
[x-(3-m)]2+(y-2m)2=9,
∴圓心C(3-m,2m),半徑r=3,
令$\left\{\begin{array}{l}{x=3-m}\\{y=2m}\end{array}\right.$,消去m得2x+y-6=0,
所以圓心在直線2x+y-6=0上,
又∵直線l經(jīng)過點(1,1),
若對任意的實數(shù)m,直線l被圓C截得的弦長都是定值,
∴直線l與圓心所在直線平行,
∴設l方程為2x+y+C=0,將(1,1)代入得C=3,
∴直線l的方程為2x+y-3=0.
故答案為:2x+y-3=0.
點評 有關(guān)直線與圓的位置關(guān)系的問題,一般采用幾何法,即先求出圓心與半徑,然后畫出圖象,利用點到圓心的距離,半徑,弦長等的關(guān)系解決問題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,2) | B. | $[{\sqrt{3},2}]$ | C. | $(-∞,-2)∪[{\sqrt{3},2}]$ | D. | $({-∞,-\sqrt{3}}]∪[{\sqrt{3},2}]$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | x | 5 |
等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 3 | y |
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 |
P(K2>k0) | 0.05 | 0.05 | 0.01 |
K0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 任意x∈R,f(π+x)=f(x) | B. | 任意x∈R,$f(\frac{π}{2}+x)=f(\frac{π}{2}-x)$ | ||
C. | 不存在${x_0}∈(0,\frac{π}{2})$,使f(x0)=0 | D. | 不存在${x_0}∈(0,\frac{π}{2})$,使$f({x_0})>\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com