【題目】某部門共有4名員工, 某次活動期間, 周六、 周日的上午、 下午各需要安排一名員工值班,若規(guī)定同一天的兩個值班崗位不能安排給同一名員工, 則該活動值班崗位的不同安排方式共有( )
A.120種B.132種C.144種D.156種
【答案】C
【解析】
由題可分析4個值班崗位有三類不同的排法:①4個員工各排1個崗位;②1個員工被安排2個值班崗位,另2個員工各安排1個值班崗位;③2個員工各安排2個值班崗位,進(jìn)而求解即可.
由題意可知,4個值班崗位有三類不同的排法:
第一類:4個員工各排1個崗位,對應(yīng)排法數(shù)為;
第二類:1個員工被安排2個值班崗位,另2個員工各安排1個值班崗位,排2個崗位的員工有4個人選,且必然是周六一個崗位,周日一個崗位,故排法為,其余兩個崗位排法為,于是第二類排法數(shù)為96;
第三類:2個員工各安排2個值班崗位,4人中,被安排值班崗位的人選共種可能,周六,周日的安排各有種可能,故此類排法共24種,
綜上,所有排法為24+96+24=144.
故選:C.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:
若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機抽取3件,求至少有1件一等品的概率;
將頻率分布直方圖中的頻率視作概率,用樣本估計總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】請解答以下問題,要求解決兩個問題的方法不同.
(1)如圖1,要在一個半徑為1米的半圓形鐵板中截取一塊面積最大的矩形,如何截?并求出這個最大矩形的面積.
(2)如圖2,要在一個長半軸為2米,短半軸為1米的半個橢圓鐵板中截取一塊面積最大的矩形,如何截。坎⑶蟪鲞@個最大矩形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,橢圓經(jīng)過橢圓C1的左焦點F 和上下頂點A,B.設(shè)斜率為k的直線l與橢圓C2相切,且與橢圓C1交于P,Q兩點.
(1)求橢圓C2的方程;
(2)①若,求k的值;
②求PQ弦長最大時k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,為兩非零有理數(shù)列(即對任意的,均為有理數(shù)),為一無理數(shù)列(即對任意的,為無理數(shù)).
(1)已知,并且對任意的恒成立,試求的通項公式.
(2)若為有理數(shù)列,試證明:對任意的,恒成立的充要條件為.
(3)已知,,對任意的,恒成立,試計算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,圓心為坐標(biāo)原點的單位圓O在C的內(nèi)部,且與C有且僅有兩個公共點,直線與C只有一個公共點.
(1)求C的標(biāo)準(zhǔn)方程;
(2)設(shè)不垂直于坐標(biāo)軸的動直線l過橢圓C的左焦點F,直線l與C交于A,B兩點,且弦AB的中垂線交x軸于點P,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com