分析 把給出的數(shù)列遞推式變形裂項,累加后結(jié)合a1=1求得a20的值.
解答 解:由a1=1,(n2+n)(an+1-an)=2,得
an+1-an=an+1-an=$2(\frac{1}{n}-\frac{1}{n+1})$.
則a2-a1=2(1-$\frac{1}{2}$).
a3-a2=2($\frac{1}{2}$-$\frac{1}{3}$).
a4-a3=2($\frac{1}{3}$-$\frac{1}{4}$).
…
a20-a19=$2(\frac{1}{19}-\frac{1}{20})$.
累加得:a20-a1=2(1-$\frac{1}{20}$).
∵a1=1,a20=$\frac{9}{5}$.
故答案為:$\frac{9}{5}$.
點評 本題考查數(shù)列遞推式,考查了累加法求數(shù)列的通項,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | π | D. | 2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{4}{5}$ | C. | $\frac{8}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{3\sqrt{2}}{4}$ | C. | $\sqrt{2}$ | D. | $\frac{5\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | -1 | C. | 1 | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com