已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.
【答案】分析:(1)根據(jù)|EA|=|EB|可判斷出|EA|+|EC|=|EB|+|EC|進(jìn)而根據(jù)橢圓的定義可知點(diǎn)E的軌跡是以A,C為焦點(diǎn),長軸長為4的橢圓,E的軌跡方程可得.
(2)設(shè)P(x1,y1),Q(x2,y2),PQ的中點(diǎn)為(x,y)將直線方程與橢圓方程聯(lián)立消去y,根據(jù)判別式大于0求得k與m的不等式關(guān)系;同時(shí)根據(jù)AB的垂直平分線與BC,可分別表示出兩直線的斜率使其乘積等于-1求得k和m的關(guān)系式,進(jìn)而可求得k的范圍.設(shè)O到直線l的距離為d,根據(jù)三角形面積公式可得△OPQ的面積的表達(dá)式,根據(jù)k的范圍確定△OPQ的面積的最大值.求出此時(shí)的k和m,所求的直線方程可得.
解答:解:(1)由題知|EA|=|EB|
∴|EA|+|EC|=|EB|+|EC|=4
又∵∴點(diǎn)E的軌跡是以A,C為焦點(diǎn),長軸長為4的橢圓,
∴E的軌跡方程為
(2)設(shè)P(x1,y1),Q(x2,y2),PQ的中點(diǎn)為(x,y
將直線y=kx+m與
聯(lián)立得(1+4k2)x2+8kmx+4m2-4=0△=16(4k2+1-m2)>0,即4k2+1>m2

依題意有,
整理得3km=4k2+1②
由①②可得,∵m>0,∴k>0,∴
設(shè)O到直線l的距離為d,則
=
當(dāng)時(shí),△OPQ的面積取最大值1,
此時(shí),∴直線方程為
點(diǎn)評(píng):本題主要考查了橢圓的標(biāo)準(zhǔn)方程及直線與橢圓的關(guān)系,考查了學(xué)生對(duì)圓錐曲線綜合知識(shí)的把握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011屆山西大學(xué)附中高三第二學(xué)期高三第一次模擬測(cè)試數(shù)學(xué)試卷 題型:解答題

(12分)
已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西大學(xué)附中高三第二學(xué)期高三第一次模擬測(cè)試數(shù)學(xué)試卷 題型:解答題

(12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.

   (1)求動(dòng)點(diǎn)E的軌跡方程;

           (2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆河南省高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題滿分12分)

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E。

(1)求動(dòng)點(diǎn)E的軌跡方程;

(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(12分)已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.

   (1)求動(dòng)點(diǎn)E的軌跡方程;

           (2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年黑龍江省鶴崗一中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E.
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線l:y=kx+m(k≠0,m>0)與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案