3.已知平面向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),則兩向量的夾角為90°.

分析 直接利用向量的數(shù)量積求解夾角即可.

解答 解:平面向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(1,-1),則兩向量的夾角為θ.
cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{\left|\overrightarrow{a}\right|\left|\overrightarrow\right|}$=$\frac{1-1}{\sqrt{2}×\sqrt{2}}$=0,
θ=90°.
故答案為:90°.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的應(yīng)用,向量的夾角的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對(duì)于任意的x1,x2∈R,若函數(shù)f(x)=2x,試比較 $\frac{f({x}_{1})+f({x}_{2})}{2}$與f($\frac{{x}_{1}+{x}_{2}}{2}$)的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O、M分別為AB、VA的中點(diǎn).
(1)求證:平面MOC⊥平面VAB
(2)求點(diǎn)O到面VAC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知全集U={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4,5,6},B={7,8,9,10},D={1,2,3},求A∩B,A∩D,A∪B,∁UA,∁AD,∁UB,∁UB∪D,∁AD∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)y=f(x)的定義域是[0,1],若0<a<$\frac{1}{2}$,則函數(shù)y=f(x+a)+f(x-a)的定義域?yàn)閇a,1-a].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知x、y∈[a,b],求x+y的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)全集為R,集合A={x|x2+ax-12=0},集合B={x|x2+bx=0},若A∩∁UB={2},求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.若集合A={x|x2+mx-3=0,x∈R},B={x|x2-x+n=0,y∈R],且A∪B={-3,0,1},求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對(duì)任意0≤x≤1,都有f′(x)≥0,成立,則a=f(2010),b=f($\frac{5}{4}$),c=-f($\frac{1}{2}$)的大小關(guān)系是(  )
A.a≤b≤cB.c≤b≤aC.b≤c≤aD.a≤c≤b

查看答案和解析>>

同步練習(xí)冊(cè)答案