科目: 來源:浙江省龍游中學2007屆高三數(shù)學模擬練習卷(1) 題型:044
在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)設(shè)的最大值是5,求k的值.
查看答案和解析>>
科目: 來源:浙江省嘉興市2007學年高考數(shù)學第一次模擬試題 題型:044
設(shè)函數(shù)f(x)=(1+x)2-ln(1+x)2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當時,不等式f(x)<m恒成立,求實數(shù)m的取值范圍;
(3)關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,求a的取值范圍.
查看答案和解析>>
科目: 來源:浙江省嘉興市2007學年高考數(shù)學第一次模擬試題 題型:044
已知,f(x)的反函數(shù)為g(x),點在曲線y=g(x)上(n∈N*),且a1=1
(I)求y=g(x)的表達式;(II)證明數(shù)列{}為等差數(shù)列;
(Ⅲ)設(shè),記Sn=b1+b2+…+bn,求Sn
查看答案和解析>>
科目: 來源:浙江省嘉興市2007學年高考數(shù)學第一次模擬試題 題型:044
已知點A(4,0),B(1,0),動點P滿足
(Ⅰ)求點P的軌跡C的方程;
(Ⅱ)點Q是軌跡C上一點,過點Q的直線l交x軸于點F(-1,0),交y軸于點M,若.
查看答案和解析>>
科目: 來源:浙江省嘉興市2007學年高考數(shù)學第一次模擬試題 題型:044
美國藍球職業(yè)聯(lián)賽(NBA)某賽季的總決賽在湖人隊與活塞隊之間進行,比賽采取七局四勝制,即若有一隊勝四場,則此隊獲勝且比賽結(jié)束.因兩隊實力非常接近,在每場比賽中每隊獲勝是等可能的.據(jù)資料統(tǒng)計,每場比賽組織者可獲門票收入100萬美元.求在這次總決賽過程中,(1)比賽5局湖人隊取勝的概率;(2)比賽組織者獲得門票收入ξ(萬美元)的概率分布列及數(shù)學期望Eξ.
查看答案和解析>>
科目: 來源:浙江省嘉興市2007學年高考數(shù)學第一次模擬試題 題型:044
如下圖,ABCD-A1B1C1D1是正四棱柱,側(cè)棱長為3,底面邊長為2,E是棱BC的中點.
(I)求證:BD1∥平面C1DE;
(II)求二面角C1-DE-C的大。
(III)在側(cè)棱BB1上是否存在點P,使得CP⊥平面C1DE?證明你的結(jié)論
查看答案和解析>>
科目: 來源:浙江省杭州市2007年第二次高考科目教學質(zhì)量檢測數(shù)學試題卷(理科) 題型:044
已知四棱錐P-ABCD的底面是邊長為a的菱形,∠ABC=120°,又PC⊥平面ABCD,PC=a,E是PA的中點.
1)求證:平面EBD⊥平面ABCD;
2)求直線PB與直線DE所成的角的余弦值;
3)設(shè)二面角A-BE-D的平面角q ,求cosq 的值
查看答案和解析>>
科目: 來源:浙江省杭州市2007年第二次高考科目教學質(zhì)量檢測數(shù)學試題卷(理科) 題型:044
設(shè)函數(shù)f(x)=2cosx(cosx+sinx)-1,xÎ R
(1)求f(x)最小正周期T;
(2)求f(x)單調(diào)遞增區(qū)間;
(3)設(shè)點P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)(nÎ N*)在函數(shù)f(x)的圖象上,且滿足條件:x1=,xn+1-xn=,求Nn=y(tǒng)1+y2+…+yn的值.
查看答案和解析>>
科目: 來源:浙江省杭州市2007年第二次高考科目教學質(zhì)量檢測數(shù)學試題卷(理科) 題型:044
(1)請寫出一個各項均為實數(shù)且公比0<q<1的等比數(shù)列,使得其同時滿足a1+a6=11且;
(2)在符合(1)條件的數(shù)列中,能否找到一正偶數(shù)m,使得這三個數(shù)依次成等差數(shù)列?若能,求出這個m的值;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com