相關習題
 0  149867  149875  149881  149885  149891  149893  149897  149903  149905  149911  149917  149921  149923  149927  149933  149935  149941  149945  149947  149951  149953  149957  149959  149961  149962  149963  149965  149966  149967  149969  149971  149975  149977  149981  149983  149987  149993  149995  150001  150005  150007  150011  150017  150023  150025  150031  150035  150037  150043  150047  150053  150061  266669 

科目: 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)=若不建隔熱層(即x=0時),每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值;
(2)求f(x)的表達式;
(3)利用“函數(其中為大于0的常數),在上是減函數,在上是增函數”這一性質,求隔熱層修建多厚時,總費用f(x)達到最小,并求出這個最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

某地政府鑒于某種日常食品價格增長過快,欲將這種食品價格控制在適當范圍內,決定對這種食品生產廠家提供政府補貼,設這種食品的市場價格為元/千克,政府補貼為 元/千克,根據市場調查,當時,這種食品市場日供應量萬千克與市場日需量萬千克近似地滿足關系:,。當市場價格稱為市場平衡價格。
(1)將政府補貼表示為市場平衡價格的函數,并求出函數的值域;
(2)為使市場平衡價格不高于每千克20元,政府補貼至少為每千克多少元?

查看答案和解析>>

科目: 來源: 題型:解答題

某商品的進價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品在該售價的基礎上每上漲1元,則每個月少賣10件(每件售價不能高于65元).設每件商品的售價上漲元(為正整數),每個月的銷售利潤為元.(14分)
(1)求的函數關系式并直接寫出自變量的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?

查看答案和解析>>

科目: 來源: 題型:解答題

已知二次函數有兩個零點,且最小值是,函數的圖象關于原點對稱;
(1)求的解析式;
(2)若在區(qū)間上是增函數,求實數的取值范圍。

查看答案和解析>>

科目: 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量y (單位:千克)與銷售價格 (單位:元/千克)滿足關系式y+10(x-6)2,其中3<x<6,a為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求a的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格x的值, 使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數,在時取得極值.
(Ⅰ)求函數的解析式;
(Ⅱ)若時,恒成立,求實數m的取值范圍;
(Ⅲ)若,是否存在實數b,使得方程在區(qū)間上恰有兩個相異實數根,若存在,求出b的范圍,若不存在說明理由.

查看答案和解析>>

科目: 來源: 題型:解答題

某車間有50名工人,要完成150件產品的生產任務,每件產品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數不再進行調整),每組加工同一中型號的零件.設加工A 型零件的工人人數為x名(x∈N*
(1)設完成A 型零件加工所需時間為小時,寫出的解析式;
(2)為了在最短時間內完成全部生產任務,x應取何值?

查看答案和解析>>

科目: 來源: 題型:解答題

已知二次函數的最小值為1,且
(1)求的解析式;  
(2)若在區(qū)間上不單調,求實數的取值范圍;
(3)在區(qū)間上,的圖像恒在的圖像上方,試確定實數的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

某企業(yè)擬建造如圖所示的容器(不計厚度,長度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設計要求容器的體積為立方米,且.假設該容器的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為3千元,半球形部分每平方米建造費用為千元,設該容器的建造費用為千元.

(1)寫出關于的函數表達式,并求該函數的定義域;
(2)求該容器的建造費用最小時的

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數是定義在上的奇函數,當時,有(其中為自然對數的底,).
(1)求函數的解析式;
(2)設,求證:當時,
(3)試問:是否存在實數,使得當時,的最小值是3?如果存在,求出實數的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案