相關(guān)習題
 0  155796  155804  155810  155814  155820  155822  155826  155832  155834  155840  155846  155850  155852  155856  155862  155864  155870  155874  155876  155880  155882  155886  155888  155890  155891  155892  155894  155895  155896  155898  155900  155904  155906  155910  155912  155916  155922  155924  155930  155934  155936  155940  155946  155952  155954  155960  155964  155966  155972  155976  155982  155990  266669 

科目: 來源: 題型:解答題

自駕游從A地到B地有甲乙兩條線路,甲線路是A-C-D-B,乙線路是A-E-F-G-H-B,其中CD段,EF段,GH段都是易堵車路段.假設(shè)這三條路段堵車與否相互獨立.這三條路段的堵車概率及平均堵車時間如表所示.

 
CD段
EF段
GH段
堵車概率



平均堵車時間
(單位:小時)

2
1
 
經(jīng)調(diào)查發(fā)現(xiàn),堵車概率上變化,上變化.
在不堵車的情況下,走甲線路需汽油費500元,走乙線路需汽油費545元.而每堵車1小時,需多花汽油費20元.路政局為了估計段平均堵車時間,調(diào)查了100名走甲線路的司機,得到下表數(shù)據(jù).
堵車時間(單位:小時)
頻數(shù)
[0,1]
8
(1, 2]
6
(2, 3]
38
(3, 4]
24
(4, 5]
24
 
(1)求段平均堵車時間的值;
(2)若只考慮所花汽油費的期望值大小,為了節(jié)約,求選擇走甲線路的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

在某大學自主招生考試中,所有選報II類志向的考生全部參加了“數(shù)學與邏輯”和“閱讀與表達”兩個科目的考試,成績分為A,B,C,D,E五個等級. 某考場考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如下圖所示,其中“數(shù)學與邏輯”科目的成績?yōu)锽的考生有10人.

(1)求該考場考生中“閱讀與表達”科目中成績?yōu)锳的人數(shù);
(2)若等級A,B,C,D,E分別對應(yīng)5分,4分,3分,2分,1分.
(i)求該考場考生“數(shù)學與邏輯”科目的平均分;
(ii)若該考場共有10人得分大于7分,其中有2人10分,2人9分, 6人8分. 從這10中隨機抽取兩人,求兩人成績之和大于等于18的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

為了解某校學生的視力情況,現(xiàn)采用隨機抽樣的方式從該校的A,B兩班中各抽5名學生進行視力檢測.檢測的數(shù)據(jù)如下:
A班5名學生的視力檢測結(jié)果:4.3,5.1,4.6,4.1,4.9.
B班5名學生的視力檢測結(jié)果:5.1,4.9,4.0,4.0,4.5.
(1)分別計算兩組數(shù)據(jù)的平均數(shù),從計算結(jié)果看,哪個班的學生視力較好?;
(2)由數(shù)據(jù)判斷哪個班的5名學生視力方差較大?(結(jié)論不要求證明)
(3)根據(jù)數(shù)據(jù)推斷A班全班40名學生中有幾名學生的視力大于4.6?

查看答案和解析>>

科目: 來源: 題型:解答題

我國政府對PM2.5采用如下標準:

PM2.5日均值m(微克/立方米)
空氣質(zhì)量等級

一級

二級

超標
 
某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測數(shù)據(jù)中,隨機抽取l0天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).

(1)求這10天數(shù)據(jù)的中位數(shù).
(2)從這l0天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達到一級的天數(shù),求的分布列;
(3)以這10天的PM2.5日均值來估計這180天的空氣質(zhì)量情況,其中大約有多少天的空氣質(zhì)量達到一級.

查看答案和解析>>

科目: 來源: 題型:解答題

現(xiàn)有編號分別為1,2,3,4,5,6,7, 8,9的九道不同的數(shù)學題。某同學從這九道題中一次隨機抽取兩道題,每題被抽到的概率是相等的,用符號表示事件“抽到兩 題的編號分別為,且”.
(1)共有多少個基本事件?并列舉出來;
(2)求該同學所抽取的兩道題的編號之和小于17但不小于11的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

為了解七班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
5
 
女生
10
 
 
合計
 
 
50
 
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.(12分)
(1)請將上面的列聯(lián)表補充完整(不用寫計算過程);
(2)能否在犯錯誤的概率不超過0.005的前提下認為喜愛打籃球與性別有關(guān)?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設(shè)其中喜愛打籃球的女生人數(shù)為,求的分布列與期望.
下面的臨界值表供參考:

0.15
0.10
0.05[
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(參考公式:,其中)

查看答案和解析>>

科目: 來源: 題型:解答題

某中學在運動會期間舉行定點投籃比賽,規(guī)定每人投籃4次,投中一球得2分,沒有投中得0分,假設(shè)每次投籃投中與否是相互獨立的,已知小明每次投籃投中的概率都是
(1)求小明在投籃過程中直到第三次才投中的概率;
(2)求小明在4次投籃后的總得分的分布列和期望.

查看答案和解析>>

科目: 來源: 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關(guān),對本班50人進行了問卷調(diào)查得到了如下列表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
5
 
女生
10
 
 
合計
 
 
50
 
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關(guān)?說明你的理由.下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
 
(參考公式:,其中)

查看答案和解析>>

科目: 來源: 題型:解答題

袋中裝有編號為的球個,編號為的球個,這些球的大小完全一樣。
(1)從中任意取出四個,求剩下的四個球都是號球的概率;
(2)從中任意取出三個,記為這三個球的編號之和,求隨機變量的分布列及其數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學在期末考試的數(shù)學成績,乙組記錄中有一個數(shù)字模糊,無法確認.假設(shè)這個數(shù)字具有隨機性,并在圖中以a表示.
(1)若甲、乙兩個小組的數(shù)學平均成績相同,求a的值;
(2)求乙組平均成績超過甲組平均成績的概率;
(3)當a=2時,分別從甲、乙兩組中各隨機選取一名同學,設(shè)這兩名同學成績之差的絕對值為X,求隨機變量X的分布列和數(shù)學期望,

查看答案和解析>>

同步練習冊答案