科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:選擇題
根據(jù)下列算法語句,當(dāng)輸入x為60時(shí),輸出y的值為( ).
A.25 B.30 C.31 D.61
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:選擇題
閱讀下邊的程序框圖,運(yùn)行相應(yīng)的程序,則輸出n的值為( ).
A.7 B.6 C.5 D.4
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:填空題
設(shè)e1,e2為單位向量,且e1,e2的夾角為,若a=e1+3e2,b=2e1,則向量a在b方向上的射影為________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:填空題
若P0(x0,y0)在橢圓=1(a>b>0)外,則過P0作橢圓的兩條切線的切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在直線方程是=1.那么對(duì)于雙曲線則有如下命題:若P0(x0,y0)在雙曲線=1(a>0,b>0)外,則過P0作雙曲線的兩條切線的切點(diǎn)為P1,P2,則切點(diǎn)弦P1P2所在的直線方程是______.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:填空題
給定區(qū)域D:.令點(diǎn)集T={(x0,y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的點(diǎn)},則T中的點(diǎn)共確定________條不同的直線.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:填空題
已知a>0,b>0,且ln(a+b)=0,則+的最小值是________.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:解答題
若復(fù)數(shù)z1與z2在復(fù)平面上所對(duì)應(yīng)的點(diǎn)關(guān)于y軸對(duì)稱,且z1(3-i)=z2(1+3i),|z1|=,求z1.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:解答題
已知向量a=,b=,且x∈.
(1)求a·b及|a+b|;
(2)若f(x)=a·b-2λ|a+b|的最小值為-,求正實(shí)數(shù)λ的值.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:解答題
設(shè)命題p:f(x)=在區(qū)間(1,+∞)上是減函數(shù);命題q:x1,x2是方程x2-ax-2=0的兩個(gè)實(shí)根,且不等式m2+5m-3≥|x1-x2|對(duì)任意的實(shí)數(shù)a∈[-1,1]恒成立.若p∧q為真,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目: 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評(píng)1練習(xí)卷(解析版) 題型:解答題
某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達(dá)式;
(3)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com