科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對(duì)于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln(x).
其中是“保等比數(shù)列函數(shù)”的是__________.(填序號(hào))
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和Sn=2n2+2n,數(shù)列{bn}的前n項(xiàng)和Tn=2-bn.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)設(shè)cn=·bn,證明:當(dāng)且僅當(dāng)n≥3時(shí),cn+1<cn..
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
已知數(shù)列{an}滿足3an+1+an=0,a2=-,則{an}的前10項(xiàng)和為________.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
若數(shù)列{an}的前n項(xiàng)和為Sn=an+,則數(shù)列{an}的通項(xiàng)公式是an=________.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+10a1,a5=9,則a1=________.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
若數(shù)列{an}滿足lgan+1=1+lgan,a1+a2+a3=10,則lg(a4+a5+a6)=________.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
等比數(shù)列{an}的前n項(xiàng)和為Sn,已知a1+an=66,a2an-1=128,Sn=126,求n和公比q的值.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn+1=4an+1,設(shè)bn=an+1-2an.證明:數(shù)列{bn}是等比數(shù)列.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:填空題
已知等比數(shù)列{an}是遞增數(shù)列,Sn是{an}的前n項(xiàng)和,若a1,a3是方程x2-5x+4=0的兩個(gè)根,則S6=________.
查看答案和解析>>
科目: 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第五章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知數(shù)列{an}的首項(xiàng)a1=2a+1(a是常數(shù),且a≠-1),
an=2an-1+n2-4n+2(n≥2),數(shù)列{bn}的首項(xiàng)b1=a,
bn=an+n2(n≥2).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com