相關習題
 0  201980  201988  201994  201998  202004  202006  202010  202016  202018  202024  202030  202034  202036  202040  202046  202048  202054  202058  202060  202064  202066  202070  202072  202074  202075  202076  202078  202079  202080  202082  202084  202088  202090  202094  202096  202100  202106  202108  202114  202118  202120  202124  202130  202136  202138  202144  202148  202150  202156  202160  202166  202174  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=
lnx
x
(其中e為自然對數(shù)的底數(shù))
(1)求函數(shù)f(x)的極值;
(2)設函數(shù)g(x)=x2f(x)-mx,其中m∈R,求g(x)在區(qū)間[1,e]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=4x-x4的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目: 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+1)=-f(x),當x∈[-1,1]時,f(x)=x2,函數(shù)g(x)=
loga(x-1)x>1
2xx≤1
,若函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上恰有8個零點,則a的取值范圍為
( 。
A、(2,4)
B、(2,5)
C、(1,5)
D、(1,4)

查看答案和解析>>

科目: 來源: 題型:

直線y=x-1與雙曲線x2-
y2
b2
=1(b>0)有兩個不同的交點,則此雙曲線離心率的范圍是(  )
A、(1,
2
B、(
2
,+∞)
C、(1,+∞)
D、(1,
2
)∪(
2
,+∞)

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(2,f(2))處的切線與y軸垂直,求a的值;
(2)當a>0時,求函數(shù)f(x)在區(qū)間(0,2]上的最小值.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=x3-x2+ax+b在點x=1處的切線與直線y=2x+1垂直,則a=
 

查看答案和解析>>

科目: 來源: 題型:

如圖,在六面體ABCDEFG中,平面EFG∥平面ABCD,AE⊥平面ABCD,EF⊥AE,AE=AB=AD,EG=BC,且EF=2EG.
(Ⅰ)求證:GD∥平面BCF;
(Ⅱ)求直線AG與平面GFCD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

記等差數(shù)列{an}得前n項和為Sn,利用倒序相加法的求和辦法,可將Sn表示成首項a1,末項an與項數(shù)的一個關系式,即Sn=
(a1+an)n
2
;類似地,記等比數(shù)列{bn}的前n項積為Tn,bn>0(n∈N*),類比等差數(shù)列的求和方法,可將Tn表示為首項b1,末項bn與項數(shù)的一個關系式,即公式Tn=
 

查看答案和解析>>

科目: 來源: 題型:

已知點P(1,1)是函數(shù)f(x)=lnx+
1
2
ax2-(a+1)x的圖象上一點.
(1)求f(x)的單調區(qū)間.
(2)證明:存在a∈(1,+∞),使得f(a)=f(
1
3
);
(3)記函數(shù)y=f(x)的圖象為曲線C,設點A(x1,y1),B(x2,y2)是曲線C上的不同兩點,如果在曲線C上存在點M(x0,y0),使得①:x0=
x1+x2
2
;②:曲線C在點M處的切線平行于直線AB,則稱函數(shù)f(x)存在“中值相依切線”,試問:函數(shù)f(x)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

若點P是曲線y=x2-lnx任意一點,則點P到直線y=x-2的最小值為
 

查看答案和解析>>

同步練習冊答案