相關(guān)習(xí)題
 0  203481  203489  203495  203499  203505  203507  203511  203517  203519  203525  203531  203535  203537  203541  203547  203549  203555  203559  203561  203565  203567  203571  203573  203575  203576  203577  203579  203580  203581  203583  203585  203589  203591  203595  203597  203601  203607  203609  203615  203619  203621  203625  203631  203637  203639  203645  203649  203651  203657  203661  203667  203675  266669 

科目: 來源: 題型:

交流電的電壓E(單位:伏)與時間t(單位:秒)的關(guān)系可用e=220
3
sin(100πt+
π
6
)來表示.求:
(1)開始時的電壓;
(2)電壓值重復(fù)出現(xiàn)一次的時間間隔;
(3)電壓的最大值和第一次獲得最大值的時間.

查看答案和解析>>

科目: 來源: 題型:

探照燈的反射鏡的縱斷面是拋物線的一部分,安裝燈源的位置在拋物線的焦點F處,如果F到燈口平面的距離恰好等于燈口的半徑,已知燈口的半徑為30cm,那么燈深為
 

查看答案和解析>>

科目: 來源: 題型:

一質(zhì)點P從單位圓O上的點(1,0)出發(fā),以角速度每秒為
π
200
弧度逆時針旋轉(zhuǎn),且與原點O的距離y與時間(單位:秒)的函數(shù)關(guān)系為y=0.01t+1.
(1)當(dāng)t=50秒時,求質(zhì)點P的位置P1的坐標(biāo);
(2)當(dāng)t=32.5分鐘時,質(zhì)點P在位置P2,求S △op1p2的值.

查看答案和解析>>

科目: 來源: 題型:

直三棱柱ABC-A1B1C1中,A1A=AC=
2
AB,AB=BC=a,D為BB1的中點.
(1)證明:平面ADC1⊥AA1C1C;
(2)求點B到平面ADC1的距離.

查看答案和解析>>

科目: 來源: 題型:

如圖,三棱錐P-ABC,底面ABC為邊長為2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D為AP上一點,AD=2DP,O為底面三角形中心.
(1)求證:DO∥面PBC;
(2)求證:AC⊥面BOD;
(3)設(shè)M為PC中點,求二面角M-BD-O的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知雙曲線E:
x2
a2
-
y2
4
=1(a>0)的中心為原點O,左、右焦點分別為F1、F2,離心率為
3
5
5
,點P是直線x=
a2
3
上任意一點,點Q在雙曲線E上,且滿足
PF2
QF2
=0.
(1)求實數(shù)a的值;
(2)證明:直線PQ與直線OQ的斜率之積是定值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=2x3+tx2+x,g(x)=x2+tx+t+3,其中t∈R.已知函數(shù)g(x)有兩個零點x1,x2,且0≤x1<1時,實數(shù)t的取值集合記為M.
(Ⅰ)求集合M;
(Ⅱ)f(x1)+f(x2)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點.
(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

一次登島、奪島軍事演習(xí)中,紅軍2000官兵乘軍艦登島,藍(lán)軍在登島海域布置魚雷反登島,每搜軍艦在登島過程中被藍(lán)軍魚雷擊沉的概率為p(0<p<1),紅軍現(xiàn)有五艘軍艦,每艘軍艦最大乘員500人,躲過魚雷襲擊就能成功登島,登島官兵至少需要1500人,才能擊敗奪島藍(lán)軍,成功奪島,紅軍可選用兩種方案運載官兵:
方案甲:使用4艘軍艦.
方案乙:使用5艘軍艦,每艘乘員400人.
(1)如果以登島人數(shù)論成敗,紅軍應(yīng)選擇哪種方案?
(2)如果以奪島論成敗,紅軍應(yīng)選擇哪種方案?

查看答案和解析>>

科目: 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,過焦點F(c,0)和點B(0,-b)的直線到原點的距離是
3
2

(1)求橢圓的方程;
(2)是否存在非零實數(shù)k,使直線y=kx+2交橢圓于不同的兩點M、N都在以B為圓心的圓上,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案